•  
  •  
 

Corresponding Author(s)

刘寅(1974—),男,中原工学院教授,博士。E-mail:hvacr@126.com 孟照峰(1990—),男,中原工学院讲师,博士。E-mail:mengzhaofeng325@163.com

Abstract

Objective: To mitigate unfavorable factors during the packing, transportation, and storage of fruits and vegetables, a foldable, preassembled turnover box was designed based on the premise of recycling. Methods: Standardized boxes were used to hold sweet potatoes, which were considered long rotating ellipsoids, and the storage environment was modeled. A porous medium model, a species transport model, and a local non-thermal equilibrium model were used to study the temperature, humidity, speed, O2 volume fraction, and CO2 volume fraction distributions in the cargo area during the curing warming, post-curing cooling, and storage stages. Results: 40 ℃ was the optimum curing air supply temperature, and the time required was 5.85 h. 10 m/s was the optimum post-curing cooling air supply speed, and the time required was 8.47 h. The air supply velocity (4.0~6.0 m/s) had little effect on the distribution of O2 and CO2 volume fractions. When the air supply velocity was 4.5 m/s, the storage effect was the optimal, with deviation rates of 1.24% and 0.48% compared to the target storage conditions (12 ℃, 90.00% RH). The generation of respiratory heat in sweet potatoes leaded to a shorter time for the internal temperature of the cargo area to reach the target curing temperature, while requiring a longer time to reach the target storage temperature. Compared to thermal conduction, convective heat transfer played a dominant role, resulting in a lag in temperature change between the internal and external temperatures of the cargo area during the storage process. Increasing the temperature and air supply velocity facilitated a faster attainment of the desired curing and storage temperatures. The physical characteristics and storage volume of sweet potatoes within the cargo area determined the subsequent warming and cooling processes. Conclusion: The velocity field on the surface of the cargo area exhibits a weak correlation with the distribution of RH, whereas the temperature field demonstrates a negative correlation with the RH field and exhibits a similar distribution pattern. The air supply velocity can alter the fluid flow direction inside the cargo area box, and both the magnitude of the air supply velocity and the direction of fluid flow inside the box significantly impact on the temperature distribution within the cargo area.

Publication Date

5-21-2024

First Page

136

Last Page

147

DOI

10.13652/j.spjx.1003.5788.2023.80402

References

[1] GOVENDER L, PILLAY K, SIWELA M, et al. Consumer perceptions and acceptability of traditional dishes prepared with provitamin a-biofortified maize and sweet potato[J]. Nutrients, 2019, 11(7): 1 577.
[2] ALAM M K. A comprehensive review of sweet potato (Ipomoea batatas L. Lam): Revisiting the associated health benefits[J]. Trends in Food Science & Technology, 2021, 115: 512-529.
[3] ROZI F, PRASETIASWATI N, ELISABETH D. Study on sweet potato market behaviour in supporting food security[J]. IOP Conference Series: Earth and Environmental Science, 2021, 756: 12082.
[4] LEE C, PARK S, KIM S, et al. Overexpression of IBLFP in sweetpotato enhances the low-temperature storage ability of tuberous roots[J]. Plant Physiology and Biochemistry, 2021, 167: 577-585.
[5] AYELESO T B, RAMACHELA K, MUKWEVHO E. A review of therapeutic potentials of sweet potato: Pharmacological activities and influence of the cultivar[J]. Tropical Journal of Pharmaceutical Research, 2016, 15(12): 2 751-2 761.
[6] SCOTT G J. A review of root, tuber and banana crops in developing countries: Past, present and future[J]. International Journal of Food Science & Technology, 2021, 56(3): 1 093-1 114.
[7] 李静宇. “气调库”必须迈过成本这道坎:专访中国食品工业协会食品物流专业委员会副会长 张签名[J]. 中国储运, 2017(4): 66-67. LI J Y. "Gas-controlled warehouses" must overcome the hurdle of cost - Interview with Zhang Qianming, Vice president of the food logistics professional committee of the China food industry association[J]. China Storage & Transport, 2017(4): 66-67.
[8] ABIDIN P E, KAZEMBE J, ATUNA R A, et al. Sand storage, extending the shelf-life of fresh sweetpotato roots for home consumption and market sales[J]. Food Science and Engineering, 2016, 6(4): 227-236.
[9] SOWLEY E, NEINDOW M, ABUBAKARI A H. Effect of poultry manure and NPK on yield and storability of orange-and white-fleshed sweet potato[Ipomoea batatas (L.) Lam][J]. Isabb Journal of Food and Agricultural Sciences, 2015, 5(1): 1-6.
[10] BAO G, WANG G, WANG B, et al. Study on the drop impact characteristics and impact damage mechanism of sweet potato tubers during harvest[J]. PLoS One, 2021, 16(8): e255856.
[11] 郜海燕, 杨海龙, 陈杭君, 等. 生鲜果蔬物流及包装技术研究与展望[J]. 食品与生物技术学报, 2020, 39(8): 1-9. GAO H Y, YANG H L, CHEN H J, et al. Progress and prospect of logistics and preservation technology on fresh fruit and vegetables[J]. Journal of Food Science and Biotechnology, 2020, 39(8): 1-9.
[12] DURET S, HOANG H, FLICK D, et al. Experimental characterization of airflow, heat and mass transfer in a cold room filled with food products[J]. International Journal of Refrigeration, 2014, 46: 17-25.
[13] 向明月. 生鲜农产品冷链物流包装技术研究及应用[J]. 食品与机械, 2023, 39(8): 103-109. XIANG M Y. Research and application progress of cold-chain logistics packaging technology of fresh agricultural products[J]. Food & Machinery, 2023, 39(8): 103-109.
[14] 杨智康, 杨大章, 谢晶, 等. 冷库低碳新技术研究进展[J]. 食品与机械, 2023, 39(1): 221-227. YANG Z K, YANG D Z, XIE J, et al. Research progress of novel low-carbon technologies in cold storages[J]. Food & Machinery, 2023, 39(1): 221-227.
[15] 李露露, 张苗, 孙红男, 等. 甘薯采后物理、化学与生物保鲜技术研究现状[J]. 江苏师范大学学报(自然科学版), 2021, 39(3): 36-41. LI L L, ZHANG M, SUN H N, et al. Research status of postharvest physical, chemical and biological preservation technology of sweetpotato[J]. Journal of Jiangsu Normal University(Natural Science Edition), 2021, 39(3): 36-41.
[16] 王晓军, 赵琳, 石江, 等. 甘薯采后贮藏保鲜及抑芽技术研究进展[J]. 浙江农业科学, 2021, 62(1): 133-138. WANG X J, ZHAO L, SHI J, et al. Research progress on post-harvest storage, preservation, and bud suppression technology of sweet potatoes[J]. Journal of Zhejiang Agricultural Sciences, 2021, 62(1): 133-138.
[17] 杜子峥, 谢晶, 朱进林. 数值模拟技术预测风机两种摆放方式对冷库堆垛货物的影响[J]. 食品与机械, 2015, 31(3): 145-149. DU Z Z, XIE J, ZHU J L. Effects of two different fans arrangement on stacking cargo in cold store based on numerical simulation[J]. Food & Machinery, 2015, 31(3): 145-149.
[18] 刘妍华, 曾志雄, 郭嘉明, 等. 增施CO2气肥对温室流场影响的数值模拟及验证[J]. 农业工程学报, 2015, 31(12): 194-199. LIU Y H, CENG Z X, GUO J M, et al. Numerical simulation and experimental verification of effect of CO2 enrichment on flow field of greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(12): 194-199.
[19] 周轲, 王瑞华, 孙海亭, 等. CFD模拟两种风机位置的苹果冷藏库的温度场[J]. 中国农机化学报, 2016, 37(7): 75-79. ZHOU K, WANG R H, SUN H T, et al. Simulation on the temperature field of the two fan solution in cool store based on CFD[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(7): 75-79.
[20] 向立平, 王汉青. 空调客车内气流组织与污染物浓度场数值模拟[J]. 中南大学学报(自然科学版), 2010, 41(5): 2 017-2 021. XIANG L P, WANG H Q. Numerical simulation of airflow and concentration fields in air-conditioning vehicle passenger compartment[J]. Journal of Central South University (Science and Technology), 2010, 41(5): 2 017-2 021.
[21] 路朗, 辛成运, 刘忠鑫. 多孔介质局部非热平衡模型研究综述[J]. 热能动力工程, 2019, 34(7): 1-8. LU L, XIN C Y, LIU Z X. Review on local thermal non-equilibrium model for porous media[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34(7): 1-8.
[22] 胡汝生, 刘寅, 杜晨阳, 等. 基于多孔介质模型的非织造布阻力特性研究[J]. 毛纺科技, 2022, 50(6): 80-89. HU R S, LIU Y, DU C Y, et al. Study on resistance characteristics of nonwovens based on porous media model[J]. Wool Textile Journal, 2022, 50(6): 80-89.
[23] WRIGHT M E, TAPPAN J H, SISTLER F E. The size and shape of typical sweet potatoes[J]. Transactions of the Asae, 1986, 29(3): 678-682.
[24] VILLORDON A, GREGORIE J C, LABONTE D. Direct measurement of sweetpotato surface area and volume using a low-cost 3D scanner for identification of shape features related to processing product recovery[J]. Hortscience, 2020, 55(5): 722-728.
[25] KUWAHARA F, SHIROTA M, NAKAYAMA A. A numerical study of interfacial convective heat transfer coefficient in two-energy equation model for convection in porous media[J]. International Journal of Heat and Mass Transfer, 2001, 44(6): 1 153-1 159.
[26] 石胜强, 张蕊, 于晋泽, 等. 基于红薯为贮藏对象的自然冷源改造库理论计算[J]. 冷藏技术, 2020, 43(4): 36-41. SHI S Q, ZHANG R, YU J Z, et al. Theoretical calculation on natural cold source modification warehouse based on sweet potatoes[J]. Journal of Refrigeration Technology, 2020, 43(4): 36-41.
[27] 申海洋, 纪龙龙, 胡良龙, 等. 甘薯收获期薯块机械物理特性参数研究[J]. 中国农机化学报, 2020, 41(12): 55-61. SHEN H Y, JI L L, HU L L, et al. Study on the mechanical and physical parameters of sweet potato tuber during harvest[J]. Journal of Chinese Agricultural Mechanization, 2020, 41(12): 55-61.
[28] 张治权. 果蔬导热系数影响因素及其内部温度场数值模拟研究[D]. 天津: 天津商业大学, 2019: 25-26. ZHANG Z Q. Research of influencing factors of thermal conductivity and internal temperature field numerical analyzation for fruit and vegetables[D].Tianjin: Tianjin University of Commerce, 2019: 25-26.
[29] 朱向秋. 果蔬呼吸热计算常数的推导和应用[J]. 河北果树, 1996(3): 32-33. ZHU X Q. Derivation and application of the constant for calculating the respiratory heat of fruits and vegetables[J]. Hebei Fruits, 1996(3): 32-33.
[30] 石小琼, 林标声, 杨永林, 等. 甘薯气调保鲜最佳贮藏条件研究[J]. 食品研究与开发, 2013, 34(15): 92-96. SHI X Q, LIN B S, YANG Y L, et al. Study on the optimum condition about controlled atmosphere storage of sweet potato[J]. Food Research and Development, 2013, 34(15): 92-96.
[31] ANSYS. Fluent user's guide. Chapter 8: Physical properties\. (2023-04-11) [2023-01-01]. https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/corp/v221/en/flu_ug/flu_ug_chp_props.html.
[32] 田康, 张尧, 李金龙, 等. 基于OpenFOAM几何流体体积方法的波浪数值模拟[J]. 上海交通大学学报, 2021, 55(1): 1-10. TIAN K, ZHANG Y, LI J L, et al. Numerical wave simulation using geometrical VOF method based on OpenFOAM[J]. Journal of Shanghai Jiaotong University, 2021, 55(1): 1-10.
[33] 南晓红, 魏高亮, 赵喜梅. 纤维风管喷射渗透比对冷藏库内流场特性的影响[J]. 农业工程学报, 2020, 36(9): 300-307. NAN X H, WEI G L, ZHAO X M. Effects of ejection-permeation ratio in fiber duct on the characteristics of air flow field in cold storage[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(9): 300-307.
[34] 黄翔. 空调工程[M]. 北京: 机械工业出版社, 2017: 439-440. HUANG X. Air condition engineering[M]. Beijing: Mechanical Industry Press, 2017: 439-440.
[35] 柴萌, 王振龙, 陈元芳, 等. 淮北南部区地温变化及其对气温变化的响应[J]. 土壤通报, 2020, 51(3): 568-573. CHAI M, WANG Z L, CHEN Y F, et al. Changes of soil temperature and its response to air temperature in the southern area of Huaibei plain[J]. Chinese Journal of Soil Science, 2020, 51(3): 568-573.
[36] 刘明亮, 王振龙, 吕海深, 等. 五道沟地区1971—2020年地温月尺度变化及其对气温的响应[J]. 灌溉排水学报, 2022, 41(2): 83-90. LIU M L, WANG Z L, LU H S, et al. Change in temperature over the past 50 years at Wudaogou and its influence on soil temperature at different depths[J]. Journal of Irrigation and Drainage, 2022, 41(2): 83-90.
[37] 高丽娜. 甘薯适时收获应注意的问题[J]. 乡村科技, 2014(17): 18. GAO L N. Issues to be aware of when harvesting sweet potatoes at the appropriate time[J]. Rural Technology, 2014(17): 18.
[38] PAN Y, CHEN L, CHEN X, et al. Postharvest intermittent heat treatment alleviates chilling injury in cold-stored sweet potato roots through the antioxidant metabolism regulation[J]. Journal of Food Processing and Preservation, 2019, 43(12): e14274.
[39] HU Q Y, XIAO F Z, CHENG Q H, et al. Effects of different treatments on chilling injury and antioxidative metabolism in sweet potato[J]. Journal of Nuclear Agricultural Sciences, 2014, 28(8): 1 407.
[40] 吴丹宁, 杨海洋, 邓吉良, 等. 热水处理对甘薯贮藏品质和生理指标的影响[J]. 食品科技, 2018, 43(12): 43-49. WU D N, YANG H Y, DENG J L, et al. Effects of hot water treatment on storage quality and physiological indexes of sweet potatoes[J]. Food Science and Technology, 2018, 43(12): 43-49.
[41] 蔡增基, 龙天渝. 流体力学泵与风机[M]. 北京: 机械工业出版社, 2009: 158-168. CAI Z J, LONG T Y. Pump fan and fluid mechanics[M]. Beijing: Mechanical Industry Press, 2009: 158-168.
[42] 赵冬艳, 孙金才, 陈纪算. 新鲜度指示型包装技术在生鲜食品的应用进展[J]. 食品与生物技术学报, 2022, 41(1): 1-9. ZHAO D Y, SUN J C, CHEN J S. Progress of freshness indicator used in fresh food packaging[J]. Journal of Food Science and Biotechnology, 2022, 41(1): 1-9.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.