•  
  •  
 

Corresponding Author(s)

赵良忠(1962—),男,邵阳学院教授,硕士。E-mail: sys169@163.com

Abstract

Objective: This study aimed to optimize the preparation process of blueberry juice and improve its antioxidant activity. Methods: Blueberry juice was prepared using a wet ultrafine grinding process and compound enzymolysis method. Response surface methodology was used to optimize the process parameters and analyze the antioxidant activity of blueberry juice. Results: There were significant differences in the juice yield and active substance content of blueberry juice under different solid-liquid ratios, crushing times, compound enzyme contents, and enzymatic hydrolysis times, with enzymatic hydrolysis time having the most significant impact on juice yield and anthocyanin content. The optimal process parameters for the wet ultrafine grinding process and compound enzymolysis method are solid-liquid ratio of 1∶1.7 (g/g), pulverization time of 8.00 min, compound enzyme content of 0.15%, and enzymatic hydrolysis time of 127 min. Under the control of these process conditions, the blueberry juice yield was 87.89%, with the contents of anthocyanin, total flavonoid and total phenol were 612.04 mg/L, 2.96 g/L and 3.43 g/L, respectively, and its antioxidant capacity was equivalent to 0.3% vitamin C when the addition amount is 1.6 mL. Conclusion: The wet ultrafine grinding process and compound enzymolysis method can improve the juice yield of blueberry juice, maximize the retention of its active substances, and enhance its antioxidant capacity.

Publication Date

7-22-2024

First Page

180

Last Page

187

DOI

10.13652/j.spjx.1003.5788.2023.60145

References

[1] 金永学, 冯建国, 郑淘, 等. 蓝莓的功能成分、保健作用及其开发利用[J]. 食品与机械, 2020, 36(5): 231-236. JIN Y X, FENG J G, ZHENG T, et al. Functional components, health function and utilization of blueberry[J]. Food & Machinery, 2020, 36(5): 231-236.
[2] LIU H N, WU H, WANG Y, et al. Enhancement on antioxidant and antibacterial activities of Brightwell blueberry by extraction and purification[J]. Applied Biological Chemistry, 2021, 64(1): 78.
[3] 周宇益, 杨哪, 孟嫚, 等. 恒稳磁场辅助冷藏保鲜对蓝莓品质的影响[J]. 食品与机械, 2023, 39(11): 161-165, 172. ZHOU Y Y, YANG N, MENG M, et al. Effects of static magnetic field-assisted preservation on the quality of blueberry[J]. Food & Machinery, 2023, 39(11): 161-165, 172.
[4] 赵伟, 黄佳琪. 干燥方式对蓝莓花青素降解特性及抗氧化能力的影响[J]. 食品与机械, 2023, 39(2): 147-152. ZHAO W, HUANG J Q. Effects of different drying methods on degradation characteristics of anthocyanins and antioxidant capacity in blueberries[J]. Food & Machinery, 2023, 39(2): 147-152.
[5] 李亚辉, 周剑忠, 马艳弘, 等. 蓝莓酒澄清稳定处理中组分及抗氧化活性变化[J]. 食品与生物技术学报, 2019, 38(6): 72-79. LI Y H, ZHOU J Z, MA Y H, et al. Variation of composition and antioxidant activity during clarification and stabilization process of blueberry wine[J]. Journal of Food Science and Biotechnology, 2019, 38(6): 72-79.
[6] 李亚东, 裴嘉博, 孙海悦. 全球蓝莓产业发展现状及展望[J]. 吉林农业大学学报, 2018, 40(4): 421-432. LI Y D, PEI J B, SUN H Y. Status and prospect of global blueberry industry[J]. Journal of Jilin Agricultural University, 2018, 40(4): 421-432.
[7] 阳翠, 董顺文, 陈昌琳, 等. 四川省蓝莓产业发展现状分析与对策建议[J]. 中国果树, 2022(1): 99-102, 108. YANG C, DONG S W, CHEN C L, et al. Analysis of the current development situation of blueberry industry in Sichuan province and suggestions for countermeasures[J]. China Fruits, 2022(1): 99-102, 108.
[8] 李洋, 冯鑫, 徐曈晖, 等. 不同冻结温度及冻融循环处理对蓝莓品质特性的影响[J]. 现代食品科技, 2023, 39(5): 127-136. LI Y, FENG X, XU T H, et al. Effects of different freezing temperatures and freeze-thaw cycles on quality characteristics of blueberries[J]. Modern Food Science & Technology, 2023, 39(5): 127-136.
[9] 郭旭, 史官清, 吴黔川, 等. 贵州省蓝莓全产业链发展现状及对策建议[J]. 中国果树, 2022(9): 93-97. GUO X, SHI G Q, WU Q C, et al. Current situation and countermeasures for the development of blueberry industry chain inGuizhou province[J]. China Fruits, 2022(9): 93-97.
[10] 宁孔卵, 姜启兴, 余达威, 等. 杀菌工艺对蓝莓果汁品质的影响[J]. 食品与生物技术学报, 2021, 40(6): 60-64. NING K L, JIANG Q X, YU D W, et al. Effects of sterilization process on blueberry juice quality[J]. Journal of Food Science and Biotechnology, 2021, 40(6): 60-64.
[11] PILAND D, BROWNING L. Acceptability of 100% blueberry juice, fiber-fortified, antioxidant-rich rooibos tea containing sorbet developed to help prevent type 2 diabetes[J]. Journal of the Academy of Nutrition and Dietetics, 2022, 122(9S): A13.
[12] 卢薇. 榨汁工艺对蓝莓汁理化性质和抗氧化性的影响[J]. 饮料工业, 2022, 25(6): 33-37. LU W. Effects of juicing process on the physicochemical properties and antioxidant activity of blueberry juice[J]. Beverage Industry, 2022, 25(6): 33-37.
[13] WANG F, ZENG J, TANG X L, et al. Effect of ultrafine grinding technology combined with high-pressure, microwave and high-temperature cooking technology on the physicochemical properties of bean dregs[J]. LWT-Food Science and Technology, 2022, 154: 112810.
[14] 施锴云, 冯爱博, 益莎, 等. 超微粉碎技术粉碎竹笋壳的工艺参数优化及其黄酮溶出效果的研究[J]. 食品与发酵科技, 2020, 56(1): 20-26, 38. SHI K Y, FENG A B, YI S, et al. Optimization of process parameters and study on flavonoid dissolution of bamboo shoot shell by ultrafine grinding technology[J]. Food and Fermentation Science & Technology, 2020, 56(1): 20-26, 38.
[15] 朱丹丹. 湿法超微粉碎银杏果粉在面条中的应用[J]. 食品与机械, 2023, 39(4): 178-183. ZHU D D. Study on the application of wet ultrafine crushing ginkgo powder in noodles[J]. Food & Machinery, 2023, 39(4): 178-183.
[16] 邓凯波, 黄雅萍, 代亚萍, 等. 超微粉碎对南瓜粉物化及其粉糊流变性质的影响[J]. 东北农业大学学报, 2018, 49(11): 42-49. DENG K B, HUANG Y P, DAI Y P, et al. Effect of ultrafine grinding on physicochemical and paste rheological properties of pumpkin powder[J]. Journal of Northeast Agricultural University, 2018, 49(11): 42-49.
[17] 刘子放, 张岩, 李俊, 等. 湿法超微粉碎程度对新鲜桑果浆理化特性及活性成分含量的影响[J]. 蚕业科学, 2017, 43(3): 472-478. LIU Z F, ZHANG Y, LI J, et al. Effect of wet superfine grinding on physicochemical properties and active ingredient contents of fresh mulberry pulp[J].Acta Sericologica Sinica, 2017, 43(3): 472-478.
[18] ZHAO X Y, ZHU H T, ZHANG G X, et al. Effect of superfine grinding on the physicochemical properties and antioxidant activity of red grape pomace powders[J]. Powder Technology, 2015, 286: 838-844.
[19] 王晓慧, 姚茂君, 陈怡君, 等. 超声辅助复合酶法提取莓茶多糖的工艺优化[J]. 食品与机械, 2021, 37(11): 166-172. WANG X H, YAO M J, CHEN Y J, et al. Research on extraction technology of Ampelopsis grossedentata polysaccharide by ultrasound-assisted enzymatic method[J]. Food & Machinery, 2021, 37(11): 166-172.
[20] 宁豫昌, 高俊杰, 袁艺萌. 复合酶处理对刺梨、苹果混合发酵果汁的影响[J]. 食品与生物技术学报, 2023, 42(8): 87-94. NING Y C, GAO J J, YUAN Y M. Effect of compound enzyme treatment on mixed fermented juice of Rosa roxburghii Tratt and Malus pumila Mill[J]. Journal of Food Science and Biotechnology, 2023, 42(8): 87-94.
[21] 朱金艳, 张俊鹏, 郑存娜, 等. 复合酶法制取蓝莓汁的工艺优化研究[J]. 中国果菜, 2020, 40(5): 2-6, 19. ZHU J Y, ZHANG J P, ZHENG C N, et al. Study on optimization of blueberry juice preparation process by complex enzyme[J]. China Fruit & Vegetable, 2020, 40(5): 2-6, 19.
[22] 贾鸿冰, 田继远, 于娟. 复合果胶酶酶解对蓝莓出汁率和花色苷溶出量的影响[J]. 食品科技, 2016, 41(6): 270-274. JIA H B, TIAN J Y, YU J. Effect of enzymatic hydrolysis of compound pectinase on juice yield and anthocyanin extraction from blueberry[J]. Food Science and Technology, 2016, 41(6): 270-274.
[23] 程宏桢, 蔡志鹏, 王静, 等. 百香果全果酒发酵工艺优化及体外抗氧化性比较分析[J]. 中国酿造, 2020, 39(4): 91-97. CHENG H Z, CAI Z P, WANG J, et al. Optimization of fermentation process for whole passion fruit wine and comparative analysis of antioxidant activity in vitro[J]. China Brewing, 2020, 39(4): 91-97.
[24] 楚文靖, 张付龙, 孙悦, 等. 蓝莓鲜果酶法榨汁工艺的优化研究[J]. 现代食品, 2021(11): 100-103, 119. CHU W J, ZHANG F L, SUN Y, et al. Optimization of enzymatic hydrolysis technology for blueberry fruit[J]. Modern Food, 2021(11): 100-103, 119.
[25] 汪晓琳, 谷绒, 胡晓涛, 等. 蓝莓汁复合酶法制取工艺的优化研究[J]. 保鲜与加工, 2017, 17(6): 71-77. WANG X L, GU R, HU X T, et al. Optimization technology of preparing blueberry juice by compoundenzymolysis method[J]. Storage and Process, 2017, 17(6): 71-77.
[26] ARNOUS A, MEYER A S. Discriminated release of phenolic substances from red wine grape skins (Vitisvinifera L.) by multicomponent enzymes treatment[J]. Biochemical Engineering Journal, 2010, 49(1): 68-77.
[27] JIANG J, PATERSON A, PIGGOTT J R. Short communication: Effects ofpectolytic enzyme treatments on anthocyanins in raspberry juice[J]. Inrernarional Journal of Food Science and Technology, 1990, 25(5): 596-600.
[28] BUCHERT J, KOPONEN J M, SUUTARINEN M, et al. Effect of enzyme-aided pressing on anthocyanin yield and profiles in bilberry and blackcurrant juices[J]. Journal of the Science of Food and Agriculture, 2005, 85(15): 2 548-2 556.
[29] 郭庆启, 张娜, 何娇, 等. 蓝靛果汁花色苷热降解动力学的研究[J]. 食品与发酵工业, 2011, 37(9): 74-78. GUO Q Q, ZHANG N, HE J, et al. Thermal degradation dynamic of anthocyanins in Lonicera edulis turcz juice[J]. Food and Fermentation Industries, 2011, 37(9): 74-78.
[30] 何婉莹, 黄展锐, 赵良忠, 等. 生浆法制作豆腐的工艺优化[J]. 现代食品科技, 2021, 37(10): 188-196. HE W Y, HUANG Z R, ZHAO Z L, et al. Optimization of tofu production from filtered raw soybean milk[J]. Modern Food Science & Technology, 2021, 37(10): 188-196.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.