•  
  •  
 

Abstract

With the application of physiological and multi-omics technologies, they will be able to accurately analyse the mechanisms of salt tolerance and fermentation promotion of fermentation microorganisms under salt stress, which will lay the foundation for the effective regulation of salt brine fermentation and enhancement of the flavour of traditional fermented foods. The article reviews the common salt-tolerant microorganisms in fermented foods, the main salt-tolerant mechanisms, the fermentation-promoting properties in high-salt environments, and the methods to study the salt-tolerant and fermentation-promoting mechanisms, as well as the future direction of their development.

Publication Date

7-22-2024

First Page

1

Last Page

10

DOI

10.13652/j.spjx.1003.5788.2024.60063

References

[1] 刘豪栋, 杨昳津, 林高节, 等. 酵母与乳酸菌的相互作用模式及其在发酵食品中的应用研究进展[J]. 食品科学, 2022, 43(9): 268-274. LIU D H, YANG Y J, LIN G J, et al. Recent progress in understanding the interaction patterns between yeast and lactic acid bacteria and their applications in fermented foods[J]. Food Science, 2022, 43(9): 268-274.
[2] 尹子迎, 关军锋, 赵江丽, 等. 水果发酵酒质量评价体系研究进展[J]. 食品与机械, 2023, 39(1): 234-240. YIN Z Y, GUAN J F, ZHAO J L, et al. Research progress on quality evaluation system of fruit fermented wine[J]. Food & Machinery, 2023, 39(1): 234-240.
[3] 邓丽丽, 曹涛, 宋晓燕, 等. 不同发酵时间对小麦淀粉理化性质影响的研究[J]. 中国粮油学报, 2023, 38(7): 100-106. DENG L L, CAO T, SONG X Y, et al. Effects of different fermentation time on physicochemical properties of wheat starch[J]. Journal of the Chinese Cereals and Oils Association, 2023, 38(7): 100-106.
[4] 李子怡, 邓淼, 王燕, 等. 发酵蔬菜中的挥发性成分及其影响因素探讨[J]. 中国酿造, 2022, 41(12): 26-30. LI Z Y, DENG M, WANG Y, et al. Volatile components of fermented vegetables and their influencing factors[J]. China Brewing, 2022, 41(12): 26-30.
[5] JOHN L, RAUL C, M A W, et al. Fermented-food metagenomics reveals substrate-associated differences in taxonomy and health-associated and antibiotic resistance determinants[J]. mSystems, 2020, 5(6): e00522-20.
[6] WANG X, ZHANG Y, REN H, et al. Comparison of bacterial diversity profiles and microbial safety assessment of salami, Chinese dry-cured sausage and Chinese smoked-cured sausage by high-throughput sequencing[J]. LWT, 2018, 90: 108-115.
[7] 周佳慧, 林礼钊, 吴惠贞, 等. 酱醪中耐盐高产酶菌株的筛选、分离和鉴定及其生化特性分析[J]. 中国调味品, 2022, 47(12): 1-6. ZHOU J H, LIN L Z, WU H Z, et al. Screening, isolation and identification of a salt-tolerant and efficient enzyme producing strain in sauce mash and analysis[J]. China Condiment, 2022, 47(12): 1-6.
[8] KIM M J, KWAK H S, KIM S S. Effects of salinity on bacterial communities, Maillard reactions, isoflavone composition, antioxidation and antiproliferation in Korean fermented soybean paste (doenjang) [J]. Food Chemistry, 2018, 245: 402-409.
[9] 何文佳, 王敏, 张任虎, 等. 毛坯腌制速率对腐乳风味及其质构特性影响[J/OL]. 食品与发酵工业. (2024-02-04) [2024-02-16]. https://doi.org/10.13995/j.cnki.11-1802/ts.037504. HE W J, WANG M, ZHANG R H, et al. Effect of pehtze salting rate on flavor and texture properties of sufu[J/OL]. Food and Fermentation Industries. (2024-02-04) [2024-02-16]. https://doi.org/10.13995/j.cnki.11-1802/ts.037504.
[10] LULF R H, VOGEL R, EHRMANN M. Microbiota dynamics and volatile compounds in lupine based Moromi fermented at different salt concentrations[J]. International Journal of Food Microbiology, 2021, 354(1): 109316.
[11] SINGRACHA P, NIAMSIRI N, VISESSANGUAN W, et al. Application of lactic acid bacteria and yeasts as starter cultures for reduced-salt soy sauce (moromi) fermentation[J]. LWT-Food Science and Technology, 2017, 78: 181-188.
[12] HU G Y, CHEN J, DU G C, et al. Moromi mash dysbiosis trigged by salt reduction is relevant to quality and aroma changes of soy sauce[J]. Food Chemistry, 2023, 406: 135064.
[13] HU X, LI D, QIAO Y, et al. Salt tolerance mechanism of a hydrocarbon-degrading strain: salt tolerance mediated by accumulated betaine in cells[J]. Journal of Hazardous Materials, 2020, 392: 122326.
[14] LI J Y, SUN C G, SHEN Z Y, et al. Untargeted metabolomic profiling of Aspergillus sojae 3.495 and Aspergillus oryzae 3.042 fermented soy sauce koji and effect on moromi fermentation flavor[J]. LWT, 2023, 184: 115027.
[15] WANG J W, ZHAO M M, XIE N Y, et al. Community structure of yeast in fermented soy sauce and screening of functional yeast with potential to enhance the soy sauce flavor[J]. International Journal of Food Microbiology, 2022, 370: 109652.
[16] SHAN P, HO C T, ZHANG L, et al. Degradation mechanism of soybean protein b3 subunit catalyzed by prolyl endopeptidase from aspergillus niger during soy sauce fermentation[J]. Journal of Agricultural and Food Chemistry, 2022, 70(19): 5 869-5 878.
[17] JIANG X W, ZHANG W, LI L L, et al. Characteristics of microbial community, taste, aroma of high-salt liquid-state secondary fortified fermented soy sauce[J]. LWT, 2023, 182: 114792 [18] ZHAO G Z, LIU C, LI S, et al. Exploring the flavor formation mechanism under osmotic conditions during soy sauce fermentation in Aspergillus oryzae by proteomic analysis[J]. Food & Function, 2020, 11(1): 640-648.
[19] 马岩石, 姜明, 李慧, 等. 基于高通量测序技术分析东北豆酱的微生物多样性[J]. 食品工业科技, 2020, 41(12): 100-105. MA Y S, JIANG M, LI H, et al. Analysis of microbial diversity of northeast soy sauce based on high-throughput sequencing technology[J]. Science and Technology of Food Industry, 2020, 41(12): 100-105.
[20] CHENG L L, LIN W F, LI P, et al. Comparison of microbial communities between normal and swollen canned soy sauces using nested PCR ‐denaturing gradient gel electrophoresis, HPLC and plate techniques[J]. International Journal of Food Science & Technology, 2014, 49(11): 2 499-2 505.
[21] LI Y, LI H, WU H, et al. Effect of staphylococci fermentation and their synergistic Lactobacillus on the physicochemical characteristics and nonvolatile metabolites of Chinese bacon[J]. Meat Science, 2024, 212: 109461.
[22] 邓岳, 梁丽静, 迟原龙, 等. 传统自然发酵酱油细菌群落结构特征分析[J]. 中国调味品, 2022, 47(5): 89-92. DENG Y, LIANG L J, CHI Y L, et al. Feature analysis of bacterial community structure of traditional natural fermented soy sauce[J]. China Condiment, 2022, 47(5): 89-92.
[23] LU J X, HU Y Y, HU H, et al. Purification and identification of antioxidative peptides from dry-cured Xuanwei ham[J]. Food Chemistry, 2016, 194: 951-958.
[24] 蔡嘉铭, 王际辉, 陶冶, 等. 霉菌发酵剂对干发酵香肠的理化指标、氧化程度及风味的影响[J]. 食品与发酵工业, 2020, 46(5): 17-22. CAI J M, WANG J H, TANG Y, et al. The effects of mould starter on the physicochemical parameters,oxidation degree and flavor of dry-cured sausage[J]. Food and Fermentation Industries, 2020, 46(5): 17-22.
[25] GARDINI F, SUZZI G, LOMBARDI A, et al. A survey of yeasts in traditional sausages of southern Italy[J]. FEMS Yeast Research, 2001, 1(2): 161-167.
[26] XIAO Y Q, LIU Y N, CHEN C G, et al. Effect of Lactobacillus plantarum and Staphylococcus xylosus on flavour development and bacterial communities in Chinese dry fermented sausages[J]. Food Research International, 2020, 135: 109247.
[27] SLEATOR R D, HILL C. Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence[J]. FEMS Microbiology Reviews, 2002, 26(1): 49-71.
[28] REBECCHI A, PISACANE V, CALLEGARI M L, et al. Ecology of antibiotic resistant coagulase-negative staphylococci isolated from the production chain of a typical Italian salami[J]. Food Control, 2015, 53: 14-22.
[29] KRULWICH T A, HICKS D B, ITO M. Cation/proton antiporter complements of bacteria: why so large and diverse?[J]. Molecular Microbiology, 2009, 74(2): 257-260.
[30] 蔡霞, 何进. 第二信使分子c-di-AMP调控细菌中钾离子转运的机制[J]. 微生物学报, 2017, 57(10): 1 434-1 442. CAI X, HE J. Mechanism of the second messenger molecule c-di-AMP regulating potassium ion transport in bacteria[J]. Journal of Microbiology, 2017, 57(10): 1 434-1 442.
[31] WOLFGANG E. The KdpD sensor kinase of Escherichia coli responds to several distinct signals to turn on expression of the Kdp transport system[J]. Journal of Bacteriology, 2016, 198(2): 212-220.
[32] GREIE J C. The KdpFABC complex from Escherichia coli: a chimeric K+ transporter merging ion pumps with ion channels[J]. European Journal of Cell Biology, 2011, 90(9): 705-710.
[33] LIN J, LIANG H, YAN J, et al. The molecular mechanism and post-transcriptional regulation characteristic of Tetragenococcus halophilus acclimation to osmotic stress revealed by quantitative proteomics[J]. Journal of Proteomics, 2017, 168: 1-14.
[34] MARTNEZ-ESPINOSA R M, KUMAR S, UPADHYAY S K, et al. Editorial: adaptation of halophilic/halotolerant microorganisms and their applications[J]. Frontiers in Microbiology, 2023, 14: 1252921.
[35] 韩力挥, 张伟, 罗泉, 等. 盐胁迫蓝细菌诱导相容性物质积累调控机制研究进展及展望[J]. 中国海洋大学学报(自然科学版), 2021, 51(1): 59-69. HAN L H, ZHANG W, LUO Q, et al. Research progresses and perspectives on regulatory mechanisms of salt stress-induced compatible solutes production in cyanobacteria[J]. Periodical of Ocean University of China, 2021, 51(1): 59-69.
[36] 张其胜. 丁香假单胞菌海藻糖的合成途径探究[D]. 武汉: 湖北大学, 2020: 3-4. ZHANG Q S. Exploring the trehalose synthesis pathway of Pseudomonas syringae[D]. Wuhan: Hubei University, 2020: 3-4.
[37] 刘达玉, 王新惠, 任宏洋. 外源相容性溶质对S酵母耐盐性及酱油风味形成的研究[J]. 中国酿造, 2012, 31(5): 96-99. LIU D Y, WANG X H, REN H Y. Compatibale solutes improved enhance salinity tolerance of Zygosaccharomyces rouxii and the flavour in high salt liquild soy mash fermentation[J]. China Brewing, 2012, 31(5): 96-99.
[38] XU S, ZHOU J, LIU L, et al. Arginine: a novel compatible solute to protect Candida glabrata against hyperosmotic stress[J]. Process Biochemistry, 2011, 46(6): 1 230-1 235.
[39] 刘玉霞, 窦世娟, 王秀伶. 细菌中脯氨酸的生物合成、降解及功能[J]. 微生物学报, 2021, 61(11): 3 351-3 362. LIU Y X, DOU S J, WANG X L. Research progress in proline biosynthesis, degradation and function in bacteria[J]. Acta Microbiologica Sinica, 2021, 61(11): 3 351-3 362.
[40] MILLER K J, ZELT S C, BAE J. Glycine betaine and proline are the principal compatible solutes of Staphylococcus aureus[J]. Current Microbiology, 1991, 23(3): 131-137.
[41] FAIZA B, HALIMA Z K, EDDINE K N. Physiological responses of salt stress and osmoprotection with proline in two strains of lactococci isolated from camels milk in Southern Algeria[J]. African Journal of Biotechnology, 2011, 10: 1 807.
[42] 张英杰. Natranaerobius thermophilus盐碱热适应机制及其甘氨酸甜菜碱合成酶基因的表达[D]. 北京: 中国农业科学院, 2021: 1-3. ZHANG Y J. Salt alkali heat adaptation mechanism of Natranaerobius thermophilus and expression of glycine betaine synthase gene[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021: 1-3.
[43] GU Z J, WANG L, LE RUDULIER D, et al. Characterization of the glycine betaine biosynthetic genes in the moderately halophilic bacterium halobacillus dabanensis D-8T[J]. Current Microbiology, 2008, 57(4): 306-311.
[44] 陈坚, 汪超, 朱琪, 等. 中国传统发酵食品研究现状及前沿应用技术展望[J]. 食品科学技术学报, 2021, 39(2): 1-7. CHEN J, WANG C, ZHU Q, et al. Research status and application prospect of frontier technology of traditional fermented food in China[J]. Journal of Food Science and Technology, 2021, 39(2): 1-7.
[45] DE BELLIS P, RIZZELLO C G. Advances in the use of beneficial microorganisms to improve nutritional and functional properties of fermented foods[J]. Foods, 2024, 13(1): 155.
[46] ZHANG L L, XIANG S J, DU T H, et al. Effect of microbiota succession on the dynamics of characteristic flavors and physicochemical properties during the soy sauce fermentation[J]. Food Bioscience, 2023, 54: 102883.
[47] 伍蓉莉, 欧阳信, 段杉, 等. 鱼露中耐盐菌的分离鉴定及发酵性能比较[J]. 中国酿造, 2018, 37(5): 108-113. WU R L, OUYANG X, DUAN S, et al. Isolation, identification and fermentation characteristics of salt-tolerant bacteria in fish sauce[J]. China Brewing, 2018, 37(5): 108-113.
[48] 刘阳, 邓静, 吴华昌, 等. 盐胁迫对枯草芽孢杆菌发酵代谢产物的影响[J]. 食品与发酵工业, 2015, 41(7): 29-33. LIU Y, DENG J, WU H C, et al. Influence of salt stress on metabolite of Bacillus subtilis[J]. Food and Fermentation Industries, 2015, 41(7): 29-33.
[49] 谢靓, 李梓铭, 蒋立文. 接种耐盐植物乳杆菌对不同盐渍程度发酵辣椒挥发性成分的影响[J]. 食品科学, 2015, 36(16): 163-169. XIE L, LI Z M, JIANG L W. Effect of salt-tolerant lactobacillus incubation on volatile components in pickled pepper with different salinities[J]. Food Science, 2015, 36(16): 163-169.
[50] SEESURIYACHAN P, KUNTIYA A, HANMOUNGJAI P, et al. Optimization of exopolysaccharide overproduction by lactobacillus confusus in solid state fermentation under high salinity stress[J]. Bioscience, Biotechnology, and Biochemistry, 2012, 76(5): 912-917.
[51] 张伟, 王洁丽, 林琛, 等. 酱醪葡萄球菌的筛选及其对高盐稀态酱油发酵的影响[J]. 中国食品学报, 2023, 23(11): 125-136. ZHANG W, WANG J L, LIN C, et al. Screening of Staphylococcus spp. in moromi and their effects on the fermentation of high-salt liquid-state soy sauce[J]. Journal of Chinese Institute of Food Science and Technology, 2023, 23(11): 125-136.
[52] CHEN D, FANG B, MANZOOR A, et al. Revealing the salinity adaptation mechanism in halotolerant bacterium Egicoccus halophilus EGI 80432 T by physiological analysis and comparative transcriptomics[J]. Applied Microbiology and Biotechnology, 2021, 105(6): 1-15.
[53] YAO S J, ZHOU R Q, JIN Y, et al. Effect of co-culture with Tetragenococcus halophilus on the physiological characterization and transcription profiling of Zygosaccharomyces rouxii[J]. Food Research International, 2019, 121: 348-358.
[54] 吉川修司. 添加耐盐性微生物对鱼露发酵及其质量的影响[J]. 中国酿造, 2015, 34(1): 176. Shuji Yoshikawa. Effects of adding salt-tolerant microorganisms on fish sauce fermentation and its quality[J]. China Brewing, 2015, 34(1): 176.
[55] SENG T H, 周斌, 侯莎, 等. 盐分对广式高盐稀态酱油发酵微生物菌群结构的影响[J]. 食品与发酵工业, 2022, 48(1): 45-54. SENG T H, ZHOU B, HOU S, et al. Effect of salt on the microbial community structure of Cantonese-style high-salt dilute soy sauce fermentation[J]. Food and Fermentation Industries, 2022, 48(1): 45-54.
[56] 曾小波, 王婷婷, 李学伟, 等. 不同盐浓度对酱醪中微生物群落及酱油品质的影响[J]. 中国酿造, 2023, 42(7): 65-72. ZENG X B, WANG T T, LI X W, et al. Effects of different salt concentrations on microbial community in sauce mash and quality of soy sauce[J]. China Brewing, 2023, 42(7): 65-72.
[57] CHUN B H, KIM K H, JEONG S E, et al. The effect of salt concentrations on the fermentation of doenjang, a traditional Korean fermented soybean paste[J]. Food Microbiology, 2020, 86: 103329.
[58] 方冠宇, 姜佳丽, 蒋予箭. 多菌混合发酵对酱油的风味物质形成及感官指标的影响[J]. 中国食品学报, 2019, 19(9): 154-163. FANG G Y, JIANG J L, JIANG J Y. The influence of multi-strain fermentation on the flavor substances and sensory evaluation in soy sauce[J]. Journal of Chinese Institute of Food Science and Technology, 2019, 19(9): 154-163.
[59] WU W Y, CHEN T, ZHAO M M, et al. Effect of co-inoculation of different halophilic bacteria and yeast on the flavor of fermented soy sauce[J]. Food Bioscience, 2023, 51: 102292.
[60] 李林, 邓娜, 张博, 等. 多组学技术及其在食品研究中的应用[J]. 食品与机械, 2023, 39(2): 17-24. LI L, DENG N, ZHANG B, et al. Advances of multi-omics and its research progress in food[J]. Food & Machinery, 2023, 39(2): 17-24.
[61] 叶碧欢, 杨阳, 朱杰丽, 等. 基于比较转录组学的多花黄精黄酮类化合物合成基因表达分析[J]. 食品与生物技术学报, 2022, 41(4): 84-92. YE B Y, YANG Y, ZHU J L, et al. Analysis of genes expression involved in flavonoids biosynthesis in polygonatum cyrtonema based on comparative transcriptome[J]. Journal of Food Science And Biotechnology, 2022, 41(4): 84-92.
[62] HABIBI F, BOAKYE D A, CHANG Y, et al. Molecular mechanisms underlying postharvest physiology and metabolism of fruit and vegetables through multi-omics technologies[J]. Scientia Horticulturae, 2024, 324: 112562.
[63] JIN J, WANG J F, LI K K, et al. Integrated physiological, transcriptomic, and metabolomic analyses revealed molecular mechanism for salt resistance in soybean roots[J]. International Journal of Molecular Sciences, 2021, 22(23): 12848.
[64] WOLFE B E, BUTTON J E, SANTARELLI M, et al. Cheese rind communities provide tractable systems for in situ and invitro studies of microbial diversity[J]. Cell, 2014, 158(2): 422-433.
[65] 葛菁萍, 康杰, 平文祥. 副干酪乳杆菌HD1.7在乙酸胁迫下转录组学研究[J]. 黑龙江大学工程学报, 2021, 12(3): 227-233. GE Q P, KANG J, PING W X. Transcriptomics study of Lactobacillus paracasei HD1.7 under acetic acid stress[J]. Journal of Engineering of Heilongjiang University, 2021, 12(3): 227-233.
[66] 宋佳佳, 古汶玉, 林昌浩, 等. 基于基因测序鱼露发酵橘青霉YL-1鉴定及安全性评价[J]. 食品科学, 2018, 39(22): 305-311. SONG J J, GU W Y, LIN C H, et al. Molecular identification and safety evaluation of Penicillium citrinum YL-1 from fish sauce based on fungal genomic sequencing[J]. Food Science, 2018, 39(22): 305-311.
[67] PARK S, SEO S, KIM E, et al. Changes of microbial community and metabolite in kimchi inoculated with different microbial community starters[J]. Food Chemistry, 2018, 274: 558-565.
[68] ZHANG W, XIAO Z C, GU Z M, et al. Fermentation-promoting effect of three salt-tolerant Staphylococcus and their co-fermentation flavor characteristics with Zygosaccharomyces rouxii in soy sauce brewing[J]. Food Chemistry, 2024, 432(1): 137245.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.