Abstract
For establishing the determination model of vitamin C content of Red Globe Grape using visible / near infrared diffuse reflectance spectroscopy, and evaluating its application value, effects on scaling model results of different chemometry modeling methods, different spectra pretreatment methods and different effective wavelength intervals were discussed, and the samples in prediction set were used to verified the accuracy of the optimal model. The results showed that in the whole spectral range, application of modified partial least squares (MPLS) combined with first derivative, 5 points smoothing, weighted multivariate discrete correction (WMSC) could obtain the optimal calibration models, the cross validation error (SECV) was 0.054 3, the calibration determination coefficient (R2cv )was 0.920 2, the prediction determination coefficient (R2p) was 0.931 8 and the standard error of prediction (SEP)was 0.050 0, the sum of squared residuals (PRESS) was 0.188 0, the relative analysis of the forecast error (RPD) was 3.640 0. Therefore, applying visible / near infrared diffuse reflectance technique to quick and nondestructive detection of vitamin C in Red Globe grape is feasible, the model is stable and with high precision.
Publication Date
10-28-2015
First Page
70
Last Page
74
DOI
10.13652/j.issn.1003-5788.2015.05.017
Recommended Citation
Chen, CHEN; Xiaoxiang, LU; Peng, ZHANG; Shaohui, CHEN; and Jiangkuo, LI
(2015)
"Determination of vitamin C in red globe grape based on visible/near-infrared diffuse reflectance spectroscopy,"
Food and Machinery: Vol. 31:
Iss.
5, Article 17.
DOI: 10.13652/j.issn.1003-5788.2015.05.017
Available at:
https://www.ifoodmm.cn/journal/vol31/iss5/17
References
[1] 梁丽雅,郝利平,闫师杰,等. 红地球、巨峰葡萄采后果实品质变化的研究[J].食品科学,2002,23(11):143~146.
[2] 李宁,关文强,段双科. 葡萄采后致腐病原菌鉴定及侵染规律[J]. 保鲜与加工,2005,5(3):37~39.
[3] 何保山,张长辉,左春艳,等. 食品中维生素C含量检测研究进展[J]. 江西农业学报,2010,22(10):111~114,117.
[4] 黄连玉,陈崇莉,罗宝芳,等. 桂西地区7种常见水果维生素C含量的测定[J]. 右江民族医学院学报,2012, 34(1):14~15.
[5] 安泉鑫,陈莉,庞林江,等. 近红外光谱技术在食品中的应用进展[J]. 食品与机械,2012,28(5):239~242.
[6] 王敏,付蓉,赵秋菊,等. 近红外光谱技术在果蔬品质无损检测中的应用[J].中国农学通报,2010,26(5):174~178.
[7] Alamar M C,Bobelyn E,Lammertyn J,et al. Calibration transfer between NIR diode array and FT—NIR spectrophotometers for measuring soluble solids contents of apple[J].Postharvest Biology and Technology,2007,45(1):38~45.
[8] Kawano S. Present condition of nondestructive quality evaluation of fruits and vegetables in Japan[J]. Japan Agricultural Research Quarterly,1992(28):212~216.
[9] 吴晨,何建国,刘贵珊,等. 基于近红外高光谱成像技术的马铃薯干物质含量无损检测[J]. 食品与机械,2014,30(4):133~136,150.
[10] 刘燕德,陈兴苗,孙旭东. 可见/近红外漫反射光谱无损检测南丰蜜桔维生素C的研究[J].光谱学与光谱分析,2008,28(10):2 318~2 320.
[11] 夏俊芳,李小昱,李培武,等. 基于小波变换的柑橘维生素C含量近红外光谱无损检测方法[J].农业工程学报,2007,23(6):170~174.
[12] 刘燕德,周延睿,潘圆媛. 基于最小二乘支持向量机的辣椒可溶性固形物和维生素C含量近红外光谱检测[J]. 光学精密工程,2014,22(2):281~288.
[13] 徐洪宇,张京芳,侯力璇,等. 基于FT—NIR光谱技术检测酿酒葡萄中可溶性固形物含量[J].中国食品学报,2013,13(11):153~159.
[14] 鲁伟奇,郭永洪. 一种识别不同种类葡萄的无损检测方法[J].中国计量学院学报,2012,23(1):20~24.
[15] 吴桂芳,黄凌霞,何勇.葡萄浆果糖度可见/近红外光谱检测的研究[J].光谱学与光谱分析,2008,28(9):2 090~2 093.
[16] 李军. 钼蓝比色法测定还原型维生素C[J]. 食品科学,2000,21(8):42~45.
[17] Fernando A Mendoza, Karen Cichy, Lu Ren-fu, et al. Evaluation of canning quality traits in black beans(Phaseolus vulgaris L.) by visible/near-infrared spectroscopy[J]. Food and Bioprocess Technology, 2014,7(9): 2 666~2 678.
[18] 祝诗平,王一鸣,张小超,等. 近红外光谱建模异常样品剔除准则与方法[J].农业机械学报, 2004, 35(4):115~119.
[19] Abdullah Iqbal, Sun Da-wen, Paul Allen. Prediction of moisture, color and pH in cooked, pre-sliced turkey hams by NIR hyperspectral imaging system[J]. Journal of Food Engineering, 2013, 117(1): 42~51.
[20] 王丹,鲁晓翔,张鹏,等. 近红外光谱检测不同贮藏期磨盘柿的内部品质[J].光谱实验室,2013,30(6):2 769~2 774.
[21] 庞滂. 近红外定性定量模型的建立与应用[D].西安:西北大学,2008.
[22] 李振庆,黄梅珍,倪一,等.改进偏最小二乘法在近红外牛奶成分测量中的应用[J].光学技术,2009,35(1):70~73.
[23] Dolores Pérez-Marín, María-Teresa Sánchez, Patricia Paz, et al. Postharvest shelf-life discrimination of nectarines produced under different irrigation strategies using NIR-spectroscopy[J]. LWT-Food Science and Technology,2011,44(6):1 405~1 414.
[24] 童莉,王欣,雯茜姆,等. 葡萄贮藏过程中含糖量、维生素C、呼吸、膜透性的变化和耐贮性的关系[J].种子,2008(10):23~25.
[25] Bureau S, Ruiz D, Reich M, et al. Rapid and non-destructive analysis of apricot fruit quality using FT-near-infrared spectroscopy[J]. Food Chemistry,2009,113(4):1 323~1 328.
[26] 王丹,鲁晓翔,张鹏,等. 近红外无损检测甜柿果实质地和品质[J].食品工业科技,2013,34(24):53~56.
[27] 郭婷婷,邬文锦,苏谦,等. 近红外玉米品种鉴别系统预处理和波长选择方法[J].农业机械学报,2009,40(S1):87~92.