Abstract
Cyanide is considered to be one of the most toxic species in food while the existing detection methods involve complex operation and will produce toxicity to inspectors. In this study, a water-soluble fluorescent probe(C-GGH) was synthesized by HOBT/DIC protocol in solution using 7-diethylaminocoumarin-3-carboxylic acid, Glycine and Histidine. Due to the presence of the recognition unit GGH, the probe C-GGH can conjugated with Cu2+ to formed non-fluorescent C-GGH-Cu2+ complex. Due to the strong binding affinity of CN- to Cu2+, CN- can extract Cu2+ from C-GGH-Cu2+ complex, leading to the release of C-GGH and the recovery of fluorescent emission of the system. The probe allowed detection of cyanide in aqueous solution with a LOD (limit of detection) of 0.017 μmol/L which is much lower than the maximum contaminant level (0.385 μmol/L) for cyanide in mineral water set by national standard (GB 8537—2008). The probe also displayed excellent specificity for CN- towards other anions, including F-, Cl-, Br-, I-, SCN-, PO3-4, N3-, NO-3, AcO-, SO2-4, and CO2-3. The method developed in this study received the same results as national standard method (GB/T 5009.48—2003, GB/T 5009.36—2003, GB/T 8538—2008), but more simple and quick in real sample detection.
Publication Date
10-28-2016
First Page
44
Last Page
47,62
DOI
10.13652/j.issn.1003-5788.2016.10.010
Recommended Citation
Binbin, ZHOU; Xiali, WANG; Fangbin, WANG; Jihong, ZHANG; Tao, YANG; Yunhui, CHENG; and Yuanqiang, HAO
(2016)
"Devise and synthesis of fluorescent probe for cyanide detection in food based on a peptide receptor,"
Food and Machinery: Vol. 32:
Iss.
10, Article 10.
DOI: 10.13652/j.issn.1003-5788.2016.10.010
Available at:
https://www.ifoodmm.cn/journal/vol32/iss10/10
References
[1] 邸玉敏, 朱军, 常靖, 等. 氰化物检测方法研究进展[J]. 理化检验: 化学分册, 2011, 47(12): 1 491-1 494.
[2] 黄光照, 汪德文, 马丽霞. 法医毒理学[M]. 北京: 人民卫生出版社, 2004: 17, 48.
[3] 邓绍平, 邝嘉萍, 钟伟祥, 等. 香港食用植物中氰化物含量及加工过程对其含量的影响[J]. 中国食品卫生杂志, 2008, 20(5): 428-430.
[4] 于高磊. 氰化物检测中的样品前处理方法分析[J]. 科学资讯, 2015, 19(17): 69-70.
[5] 詹为民, 沈兆欣, 鲍静. 氰化物检测中显色液溶剂的替代分析[J]. 环境工程, 2015(S1): 1-3.
[6] 骆胜超. 对氰化物检测中样品前处理方法的探讨[J]. 公共卫生与预防医学, 2006, 17(3): 138-139.
[7] 黄小焕, 陶晓薇, 余全忠, 等. 酱香型白酒中氰化物含量测定方法的改进[J]. 酿酒科技, 2015(8): 65-70.
[8] 叶梅, 吴文林, 郭靓, 等. 离子色谱-脉冲安培检测法快速测定配制酒中的氰化物[J]. 食品科学, 2016, 37(8): 192-195.
[9] 吁继承. 用银明胶络合剂测定酒中氰化物[J]. 食品科学, 1989(1): 42-44.
[10] 周裕敏, 田衎, 张萍. 流动注射安培法测定水中总氰化物[J]. 理化检验: 化学分册, 2014, 50(10): 1 317-1 318.
[11] 杨俊, 陈亿展, 孟令兵, 等. 氰化物纸片快速测定食品中的氰化物[J]. 中国卫生检验杂志, 2012, 22(10): 2 325-2 327.
[12] GIURIATI C, CAVALLI S, GORNI A, et al. Ion chromatographic determination of sulfide and cyanide in real matrices by using pulsed amperometric detection on a silver electrode[J]. Journal of Chromatography A, 2014, 1 023(1): 105-112.
[13] 王书源, 李忠海, 付湘晋, 等. 高荧光CdTe量子点荧光探针测定Cu2+ [J]. 食品与机械, 2015, 31(2): 125-129.
[14] 李玉美, 班睿, 谢兵, 等. 量子点在食品安全检测中的应用研究[J]. 江苏农业学报, 2015, 31(1): 222-230.
[15] 李萌立, 李忠海, 李节, 等. 量子点荧光探针技术在食源性致病菌检测中的应用[J]. 食品与机械, 2013, 29(5): 241-244.
[16] AL-SABHA T N, AL-KAREMY NM. The use of 7,7`,8,8`-tetracyanoquinodimethane for the spectrophotometric determin-ation of some primary amines application to real water samples[J]. Journal of Analytical Methods in Chemistry, 2013, 2 013(1): 1-8.
[17] LA Ming, HAO Yuan-qiang, WANG Zhao-yang, et al. Selective and sensitive detection of cyanide based on the displacement strategy using a water-soluble fluorescent probe[J]. Journal of Analytical Methods in Chemistry, 2016, 2016(1): 1-6.
[18] HAO Yuan-qiang, CHEN Wan-song, Wang Li-qiang. A retrievable, water-soluble and biocompatible fluorescent probe for recognition of Cu(II) and sulfide based on a peptide receptor[J]. Talanta, 2015, 143(23): 307-314.
[19] ZHOU Bin-bin, LI Chun-lan, LIU You-nian, et al. Ferrocene tripeptide Gly-Pro-Arg conjugates: synthesis and inhibitory effects on alzheimer’s Aβ1–42 fibrillogenesis and Aβ-induced cytotoxicity in vitro[J]. Bioorganic & Medicinal Chemistry, 2013, 21 (11): 395-402.
[20] GEE H-C, LEE C-H, JEONGY-H, et al. Highly sensitive and selective cyanide detection via Cu2+ complex ligand exchange[J]. Chem. Commun., 2011, 47(43): 11 963-11 965.
[21] JUNG H S, HAN J H, KIMZ H, et al. Coumarin-Cu(II) ensemble-based cyanide sensing chemodosimeter[J]. Org. Lett. , 2011, 13 (19): 5 056-5 059.