Abstract
The freezing process of numerical model, solving differential equations, predicting freezing time and analyzing of air supply velocity, temperature and methods were reviewed. The application of numerical simulation technology in food freezing process was discussed. The numerical simulation methods for different freezing objects were also summarized, which would be useful for the future application of numerical simulation methods in the process of heat transfer of foods.
Publication Date
10-28-2016
First Page
200
Last Page
204
DOI
10.13652/j.issn.1003-5788.2016.10.045
Recommended Citation
Jinfeng, WANG; Wenjun, LI; and Jing, XIE
(2016)
"Application of numerical simulation in process of food freezing,"
Food and Machinery: Vol. 32:
Iss.
10, Article 44.
DOI: 10.13652/j.issn.1003-5788.2016.10.045
Available at:
https://www.ifoodmm.cn/journal/vol32/iss10/44
References
[1] HUAN Zhong-jie, HE Shao-shu, MA Yi-tai. Numerical simulation and analysis for quick-frozen food processing[J]. Journal of Food Engineering, 2004, 60(3): 267-273.
[2] 成芳, 杨小梅, 由昭红, 等. 食品冻结过程的数值模拟技术[J]. 农业机械学报, 2014(7): 162-170.
[3] 赵金红, 胡锐, 刘冰, 等. 几种冷冻新技术对食品冻结过程中冰晶形成的影响[J]. 食品与机械, 2012, 28(6): 241-245.
[4] SABLIOV C M, FARKAS B E, KEENER K M, et al. Cooling of shell eggs with cryogenic carbon dioxide: a finite element analysis of heat transfer[J]. LWT-Food Science and Technology, 2002, 35(7): 568-574.
[5] MORAGA N O, VEGA-GALVEZ A, LEMUS-MONDACA R. Numerical simulation of experimental freezing process of ground meat cylinders[J]. International Journal of Food Engineering, 2012, 7(6): 639-646.
[6] BOTHEJU W S, AMARATHUNGE K S P, ABEYSINGHE I S B, et al. Modeling trough withering system to predict the moisture content of tea leaves at real time using one dimensional heat and mass transfer finite difference model[J]. Journal of Tea Science, 2010, 75(1): 27-41.
[7] SONG Xiao-yan, ZOU Tong-hua, HONG Qiao-di, et al. Effect of different positions on quick-frozen results of bean buns and steamed bread in quick-freezer[J]. Storage and Process, 2014, 14(6): 40-42.
[8] CLELAND D J, CLELAND A C, JONES R S. Collection of accurate experimental data for testing the performance of simple methods for food freezing time prediction[J]. Journal of Food Process Engineering, 1994, 17(1): 93-119.
[9] 李杰, 谢晶. 上下冲击式速冻装置内静压箱流场的均匀性研究[C]// 第六届全国食品冷藏链大会论文集. 上海: 中国制冷学会、全国商业冷藏科技情报站, 2008: 6.
[10] 李宝方, 邢玉清. 基于MATLAB GUI的数字图像处理仿真系统设计[J]. 计算机与数字工程, 2014(11): 2 177-2 180.
[11] GONI S M, PURLIS E, SALVADORI V O. Three-dimensional reconstruction of irregular foodstuffs[J]. Journal of Food Engineering, 2007, 82(4): 536-547.
[12] GONI S M, PURLIS E, SALVADORI V O. Geometry modelling of food materials from magnetic resonance imaging[J]. Journal of Food Engineering, 2008, 88(4): 561-567.
[13] 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006: 176-179.
[14] PHAM Q T, TRUJILLO F J, MCPHAIL N. Finite element model for beef chilling using CFD-generated heat transfer coefficients[J]. International Journal of Refrigeration, 2009, 32(1): 102-113.
[15] BELYTSCHKO T, KRONGAUZ Y, ORGNA D, et al. Meshless methods: an overview and recnet developments[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1):3-47.
[16] 张雄, 刘岩. 无网格法[M]. 北京: 清华大学出版社, 2004: 1-13.
[17] 张雄, 宋康祖, 陆明万. 无网格法研究进展及其应用[J]. 计算力学学报, 2003, 20(6): 730-742.
[18] ATLURI S N, SHEN S P. The meshless local Petorv-Galerkin method[M]. [S. l.]: Tech Science Press, 2002: 93-124.
[19] ATLURI S N. The meshless local Petorv-Galerkin(MLPG) method for domain & boundary discretizations[M]. [S. l.]: Tech Science Press, 2004: 105-145.
[20] 张俊贤, 朱风风, 王金田. 题解有限元法和无网格伽辽金法[J].山西建筑, 2010, 36(1): 241-245.
[21] 陶文铨, 吴学红, 戴艳俊. 无网格数值求解方法[J]. 中国电机工程学报, 2010, 30(5): 1-10.
[22] 张雄, 胡炜, 潘小飞. 加权最小二乘无网格法[J]. 力学学报, 2003, 35(4): 425-431.
[23] AMANTEA R P, FORTES M, MARTINS J H, et al. Numerical simulation techniques for optimizing thermodynamic efficiencies of cereal grain dryers[J]. Drying Technology, 2013, 31(6): 672-683.
[24] KARUNASENAA H C P, BROWNA R J, GUA Y T, et al. Application of meshfree methods to numerically simulate microscale deformations of different plant food materials during drying[J]. Journal of Food Engineering, 2015, 146: 209-226.
[25] WELTI-CHANES J, VERGARA-BALDERAS F, BERMUDEZ-AGUIRRE D. Transport phenomena in food engineering: basic concepts and advances[J]. Journal of Food Engineering, 2005, 67(1/2): 113-128.
[26] SCHEERLINCK N, VERBOVEN P, FIKIIN K A, et al. Finite element computation of unsteady phase change heat transfer during freezing or thawing of food using a combined enthalpy and Kirchhoff transform method[J]. Transactions of the Asae American Society of Agricultural Engineers, 2001, 44(2): 429-438.
[27] SANTOS M V, LESPINARD A R. Numerical simulation of mushrooms during freezing using the FEM and an enthalpy: Kirchh off formulation[J]. Heat and Mass Transfer, 2011, 47(12): 1 671-1 683.
[28] TOMAS N, SUN Da-wen. Computational fluid dynamics (CFD) - an effective and efficient design and analysis tool for the food industry: a review[J]. Trends in Food Science & Technology, 2006, 17(11): 600-620.
[29] CLELAND D J, CLELAND A C, JONES R S. Collection of accurate experimental data for testing the performance of simple methods for food freezing time prediction[J]. Journal of Food Process Engineering, 1994, 17(1): 93-119.
[30] CAMPAONE L A, SALVADORI V O, MASCHERONI R H. Food freezing with simultaneous surface dehydration: approximate prediction of freezing time[J]. International Journal of Heat & Mass Transfer, 2005, 48(6): 1 205-1 213.
[31] 李杰, 谢晶, 陆方娟. 食品冻结过程温度场及冻结时间的数值模拟与实验研究[J]. 食品工业科技, 2009(2): 123-125.
[32] KOTCHETKOV N D, MIKHAILIN N V, AVERIN G D. The effect of air temperature and velocity at various periods upon the technological characteristics during meat freezing[J]. Proceedings of the International Congress of Refrigeration (13th Washington), 1973(3): 205-213.
[33] MOLEERATANOND W. Heat exchange of boxed ground beef as influenced by packaging, refrigeration temperatures and air velocities[J]. Dissertation Abstracts International, 1982, 42(8): 148-178.
[34] DOMINGUEZ M, ELVIRA C, FUSTER C. Influence of air velocity and temperature on the two-stage cooling of perishable large-sized products[J]. Bulletin de l'Institut International du Froid, 1975(4): 83-90.
[35] 张珍, 谢晶. 带有上下均风孔板的速冻装置中流场及温度场的数值模拟[J]. 制冷学报, 2009, 30(5): 36-40.
[36] 张珍, 谢晶. 上下冲击式高效鼓风冻结装置速度场的数值模拟与验证[J]. 低温工程, 2008(6): 45-50.
[37] 李杰, 谢晶. 鼓风冻结虾仁时间的数值模拟及实验验证[J]. 农业工程学报, 2009, 25(4): 248-252.
[38] SARKAR A, SINGH R P. Air impingement technology for food processing: visualization studies[J]. Lebensmittel-Wissenschaft und-Technologie, 2004, 37(8): 873-879.
[39] HU Ze-hua, SUN Da-wen. Modelling of an experimental air-blast freezer using CFD code, in: advance in refrigeration system, food technologies and cold chain[J]. International Institute of Refrigeration, 1998, 6: 395-400.