Abstract
In this paper, the basic theory of microbial risk assessment was introduced, and the software modules used to establish predictive microbial models were concluded. The characteristics of Bayesian networks and its application in the food-borne microbial quantitative risk assessment were also summarized. Therefore, its future application in microbial quantitative risk assessment were prospected.
Publication Date
10-28-2016
First Page
215
Last Page
220
DOI
10.13652/j.issn.1003-5788.2016.10.048
Recommended Citation
Jing, LIU; Jiaxin, YANG; and Xiao, GUAN
(2016)
"Application of Bayesian network for quantitative microbial risk assessment,"
Food and Machinery: Vol. 32:
Iss.
10, Article 47.
DOI: 10.13652/j.issn.1003-5788.2016.10.048
Available at:
https://www.ifoodmm.cn/journal/vol32/iss10/47
References
[1] DENISE B, FIONA H, ANNE R, et al. Beyond QMRA: Modelling microbial health risk as a complex system using Bayesian networks[J]. Environment International, 2015, 80: 8-18.
[2] 董庆利, 王海梅, MALAKAR P K, 等. 我国食品微生物定量风险评估的研究进展[J]. 食品科学, 2015, 36(11): 221-229.
[3] HAVELAARA H, EVERSAE G, NAUTAM J. Challenges of quantitative microbial risk assessment at EU level[J]. Trends in Food Science&Technology, 2008, 19: S26-S33.
[4] 张方怡, 董庆利, 黄宋琳, 等. 基于贝叶斯网络的猪肉合格率的模型构建[J]. 食品工业科技, 2012, 33(10): 52-54, 93.
[5] 张汉江, 葛伟娜, 罗端红. 质量贸易条件与农产品食品贸易的质量风险控制[J]. 系统工程, 2007, 25(9): 49-54.
[6] 江静, 侯永芳, 刘秀娟, 等. 药品不良反应信号检测方法概述[J]. 中国药物警戒, 2010, 7(2): 78-80.
[7] 杨丽, 刘文. 食品安全微生物风险分析的原则和应用[J]. 世界标准信息, 2003(11): 9-10.
[8] Codex Alimentarius Commission. Principles and guidelines for the conduct of microbiological risk assessment. [2014-05-03]. http://www.codexalimentarius.net/download/standards/357/CXG_030e.pdf.
[9] Codex Alimentarius Commission. Working principles for risk analysis for food safety for application by governments. [2014-04-05]. http://www.codexalimentarius.net/web/more_info.jsp?id_sta=10751.
[10] ALBAN L, OLSEN A M, NIELSEN B, et al. Qualitative and quantitative risk assessment for human salmonellosis due to multiresistant Salmonella typhimurium DT104 from consumption of Danish dry-cured pork sausages[J]. Preventive Veterinary Medicine, 2002, 52(3/4): 251-265.
[11] 王峥, 邓小玲. 食源性致病菌微生物风险评估的概况及进展[J]. 国外医学: 卫生学分册, 2009, 36(5): 276-280.
[12] NAUTA M J. Separation of uncertainty and variability in quantitative microbial risk assessment models[J]. International Journal of Food Microbiology, 2011, 31(8): 1 295-1 307.
[13] 王迪, 程永友, 杨曙明. 从农产品中微生物风险评估研究[J]. 食品与发酵工业, 2008, 34(4): 118-121.
[14] RUBINSTEIN R Y, KROESE T D P. Simulation and the Monte Carlo Method [M]. New Jersey: JohnWiley & Sons, Hoboken, 2008: 167-193.
[15] 董庆利. 低温蒸煮香肠中大肠杆菌生长模型参数的不确定性研究[J]. 食品科学, 2010, 31(5): 5-8.
[16] RIGAUX C, ANCELET S, CARLIN F, et al. Inferring an augmented Bayesiannetwork to confront a complex quantitative microbial risk assessmentmodelwith durability studies: application to Bacillus cereuson a courgette purée productionchain[J]. Risk Analysis, 2012a, 33(5): 877-892.
[17] 董庆利, 高翠, 郑丽敏, 等. 冷却猪肉中气单胞菌的定量暴露评估[J]. 食品科学, 2012, 33(15): 24-27.
[18] PEARL J F. Propagation and structuring in belief networks[J]. Artificial Intelligence,1986, 29(3): 241-288.
[19] 厉海涛, 金光, 周经伦, 等. 贝叶斯网络推理算法综述[J]. 系统工程与电子技术, 2008(5): 935-939.
[20] PARSONSD J, ORTON T G, D'SOUZA J, et al. A comparison of threemodeling approaches for quantitative risk assessment using the case study ofSalmonella spp. in poultrymeat[J]. Food Microbiol, 2005, 98(1): 35-51.
[21] AGYILERA P A, FERNANDEZ A, FERNANDEZ R, et al. Bayesiannetworks inEnvironmentalmodeling[J]. Environmental Modelling & Software, 2012, 26(12): 1 376-1 388.
[22] BARKER G C. Application of Bayesian belief network models to food safety science.Bayesian Statistics and Quality Modeling in the Agri-food ProductionChain[M]. The Netherlands: Kluwer, Dordrecht, 2004: 117-130.
[23] GREINER M, SMID J, HAVELAAR A H, et al. Graphical models and Bayesiandomains in riskmodeling: application in microbiological risk assessment[J]. Preventive Veterinary Medicine, 2013, 110(1): 4-11.
[24] SMID J H, VERLOO D, BARKER G C, et al. Strengths and weaknesses ofMonte Carlosimulation models and Bayesian belief networks inmicrobial risk assessment[J]. Food Microbiol, 2010, 139: S57-S63.
[25] DONALD M, COOK A, MENGERSEN K. Bayesian network for risk of diarrhea associatedwith the use of recycled water[J]. Risk Analysis, 2009, 29(12): 1 672-1 685.
[26] BARANYI J, ROBERTS TA. Mathematics of predictive food microbiology [J]. International Journal of Food Microbiology, 1995, 26(2): 199-218.
[27] 李聪, 张艺兵, 李朝伟, 等. 暴露评估在食品安全状态评价中的应用[J]. 检验检疫科学, 2002, 12(1): 11-12.
[28] TEUNIS P F, KASUGA F, FAZIL A, et al. Dose-response modeling of Salmonella using outbreak data[J].International Journal of Food Microbiology, 2010, 144(2): 243-249.
[29] BARANYI J, ROBERTS T A. Mathematics of predictive food microbiology[J]. International Journal ofFood Microbiology, 1995, 26(2): 199-218.
[30] 刘静,杜广全,管骁. 食品预测微生物软件的分析与比较[J]. 食品与机械, 2016, 32(4): 61-66,70.
[31] 罗祎, 姚李四, 储晓刚. 食品安全微生物风险评估[J]. 食品工业科技, 2005(6): 18-20, 22-24.
[32] BARKER G C, TALBOT N L C, PECK M W. Risk assessment for Clostridium botulinum: anetworkapproach[J]. Biodeterior. Biodegrad, 2002, 50(3/4): 167-175.
[33] ALBERT I, GRENIER E, DENIS J B, et al. Quantitative risk assessment fromfarmto fork andbeyond: a global Bayesian approach concerning food-borne diseases[J]. Risk Analysis, 2008, 28(2): 557-571.
[34] RIGAUX C, DENIS J B, ALBERT I, et al. A meta-analysis accounting for sources of variability toestimate heat resistance reference parameters of bacteria using hierarchicalBayesian modeling: estimation of D at 121.1 ℃ and pH 7, z T and z pH of Geobacillusstearothermophilus[J]. Food Microbiol, 2013, 161(2): 112-120.
[35] 刘丽梅, 高永超, 王玎. 食品中微生物危害的风险评估建模方法改进与应用[J]. 农业工程学报, 2014(6): 279-286.
[36] SMID J H, HERES L, HAVELAAR A H, et al. A biotracingmodel of Salmonella inthe porkproductionchain[J]. Food Protection, 2012, 75(2): 270-280.
[37] POUILLOT R, ALBERT I, CORNU M, et al. Estimation of uncertainty and variabilityin bacterialgrowth using Bayesian inference. Application to Listeria monocytogenes[J]. Food Microbiol, 2003, 81(2): 87-104.
[38] DELIGENTTE-MULLER M L, CORNU M, POUILLOT R, et al. Use of Bayesianmodelingin riskassessment: application to growth of Listeria monocytogenes and food flora incold-smoked salmon[J]. Food Microbiol, 2006, 106(2): 195-208.
[39] SMID J, JONGE R D, HAVELAAR A H, et al. Variability and uncertainty analysisof thecross-contamination ratios of Salmonella during pork cutting[J]. Risk Analysis, 2013, 33(6): 1 100-1 115.
[40] KUIKKA S, HILDEN M, GISLASON, H, et al. Modeling environmentallydriven uncertainties in Baltic cod(Gadusmorhua) management by Bayesian influence diagrams[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1999, 56(4): 629-641.
[41] FENTON N, NEIL M. Risk Assessment and Decision Analysis with Bayesian Networks[J].Journal of Applied Statistics, 2014, 41(4): 910-910.
[42] KONTKANEN P, MYLLYMAKI P, SILANDER T, et al. Comparing predictive inferencemethods fordiscrete domains. Sixth International Workshop on Artificial Intelligenceand Statistics[M]. USA: Fort Lauderdale, 1997: 311-318.
[43] LIU Li-mei, GAO Yong-chao, WANG Yong-chun. Improvement and application of modular process risk modeling method formicrobial risk assessment[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 5(9): 434-438.
[44] SMID J H, SWART AN, HAVELAAR AH. A practical framework for the constructionof abiotracingmodel: application to Salmonella in the pork slaughter chain[J]. Risk Analysis, 2012, 31(9): 1 434-1 450.
[45] DUSPOHL M, FRANK S, DOLL P. A review of Bayesian networks as a participatorymodeling approachin support of sustainable environmental management[J]. Sustainable. Development, 2012, 5(12): 1-18.
[46] NEWTON A C. Bayesian belief networks in environmental modelling: a review of recentprogress. Environmental Modeling: New Research[M]. New York: Nova Science Publishers, 2009: 13-50.
[47] SOLLER J. An introduction to quantitative microbial risk assessment. [2014-05-05] http://water.epa.gov/scitech/swgudiance/standards/criteria/health/recreation/upload/2008_04_09_criteria_recreation_feb2008_risk-assessment.pdf .
[48] MITCHELL-BLACKWOOD J, GURIAN P L, LEE R, et al. Variancein Bacillus anthracis virulence assessed through Bayesian hierarchical dose-response modeling[J]. Applied Microbiol, 2012, 113(2): 265-275.