Abstract
In order to detect the external quality of potato quickly, the hyperspectral imaging technology was used. Potato with germination and other three kinds of common defects were studied. The partial least-squares discriminant model were built after different pretreatment methods for spectral data processing. The results showed that pretreatment method of SNV was the best. 13 and 9 feature bands were selected after using successive projections algorithm (SPA) and weighted weight method (WWM) for spectral data preprocessed. The support vector machine (SVM) discriminant model were established for both SPA and WWM. Our results also showed that the two methods to predict the set of discriminant accuracy reached 100%. WWM-SVM discriminant model of calibration set of cross validation rate was 99.5%, higher than that of the SPA-SVM discriminant model. The study demonstrated the feasibility of using hyperspectral imaging technology combined with WWM-SVM and SPA-SVM for potato external quality grading.
Publication Date
11-28-2016
First Page
122
Last Page
125,211
DOI
10.13652/j.issn.1003-5788.2016.11.027
Recommended Citation
Jianmeng, DENG; Hongjun, WANG; Zouzou, LI; and Yuanhong, LI
(2016)
"Detection of potato external quality based on hyperspectral technology,"
Food and Machinery: Vol. 32:
Iss.
11, Article 27.
DOI: 10.13652/j.issn.1003-5788.2016.11.027
Available at:
https://www.ifoodmm.cn/journal/vol32/iss11/27
References
[1] 李小平. 马铃薯机械化生产现状及发展对策[J]. 青海农林科技, 2015(2): 111-112.
[2] 谢建华. 我国马铃薯生产现状及发展对策[J]. 中国农技推广, 2007, 23(5): 4-7.
[3] 周伶俐, 胥成刚, 周耀建. 马铃薯质量缺陷原因分析及防范措施[J]. 现代农业科技, 2010(22):132-133.
[4] 马本学, 应义斌, 饶秀勤, 等. 高光谱成像在水果内部品质无损检测中的研究进展[J]. 光谱学与光谱分析, 2009, 29(6): 1 611-1 615.
[5] 程国首, 郭俊先, 石砦, 等. 基于高光谱图像技术的新疆红富士苹果重量预测[J]. 新疆农业大学学报, 2011, 34(3): 249-252.
[6] DIWAN P, ARIANA, LU Ren-fu, et al. Near-infrared hyperspectral reflectance imaging for detection of bruises on picking cucumber[J]. Computer and Electronics in Agricultures, 2006, 53(1): 60-70.
[7] 赵杰文, 刘剑华, 陈全胜, 等. 利用高光谱图像技术检测水果轻微损伤[J]. 农业机械学报, 2008, 39(1): 106-109.
[8] BARANOWSKI P, MAZUREK W, WOZNIAK J, et al. Detection of early bruises in apples using hyperspectral data and thermal imaging[J]. Journal of Food Engineering, 2012, 110(3): 345-355.
[9] LI Jiang-bo, RAO Xiu-qin, YING Yi-bin. Development of algorithms for detecting citrus canker based on hyperspectral reflectance imaging[J]. Journal of The Science of Food and Agriculture, 2012, 92(1): 125-134.
[10] 郭恩有, 刘木华, 赵杰文, 等. 脐橙糖度的高光谱图像无损检测技术[J]. 农业机械学报, 2008, 39(5): 91-93, 103.
[11] ZHAO Jie-wen, CHEN Quan-sheng, VITTAYAPADUNG S, et al. Determination of apple firmness using hyperspectral imaging technique and multivariate calibrations [J].Transactions of the CSAE, 2009, 25(11): 226-231.
[12] 周竹, 李小昱, 高海龙, 等. 马铃薯干物质含量高光谱检测中变量选择方法比较[J]. 农业机械学报, 2012, 43(2): 128-133, 185.
[13] RAJKUMAR P, WANG Ning, EIMASRY G, et al. Studies on banana fruit quality and maturity stages using hyperspectral imaging[J]. Journal of Food Engineering, 2012, 108(1): 194-200.
[14] 洪添胜, 乔军, MICHAEAL O Ngadi, 等. 基于高光谱图像技术的雪花梨品质无损检测[J]. 农业工程学报, 2007,23(2): 151-155.
[15] 单佳佳, 彭彦昆, 王伟, 等. 基于高光谱成像技术的苹果内外部品质同时检测[J]. 农业机械学报, 2011, 42(3): 140-144.
[16] ZHU Da-zou, WANG Kun, PAN Bin-shuang, et al. Identification of Wheat Cultivars Based on the Hyperspectral Image of Single Seed[J]. Journal of Nanoelectronics and Optoelectronics, 2012, 7: 167-172.
[17] 周竹, 李小昱, 陶海龙, 等. 基于高光谱成像技术的马铃薯外部缺陷检测[J]. 农业工程学报, 2012, 28(21): 221-228.
[18] 高海龙, 李小昱, 徐森淼, 等. 透射和反射高光谱成像的马铃薯损伤检测比较研究[J]. 光谱学与光谱分析, 2013, 33(12): 3 366-3 371.
[19] 中华人民共和国农业部. NY/T 1066—2006 马铃薯等级规格[S]. 北京: 中国农业出版社, 2006.
[20] ARAUJO M C U, SALDANHA T C B, GALVAO R K H, et al. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis[J]. Chemometrics and Intelligent Laboratory Systems, 2001, 57: 65-73.
[21] WU Wei, WALCZAK B, MASSART D L, et al. Artificial neural networks in classification of NIR spectral data: design of the training set[J]. Chemometrics and Intelligent Laborary System, 1996, 33(1): 35-46.
[22] 吴佳, 汤全武, 史崇升, 等. 马铃薯品质无损检测技术研究进展[J]. 食品与机械, 2014, 30(3): 257-271.