Abstract
Based on the raw materials of mussel meat after taking out the pearl, ultra high pressure is used to extract mussel polysaccharide. The response surface experimental design was used to get the training samples for the neutral network, while the sophisticated neutral network was used for training and stimulating, analyzing extraction factors (pressure strength, solid- liquid ratio and pressure holding time), the interaction between the factors that affected the extraction rate of mussel polysaccharide, and optimizing the ultra high pressure extraction process of mussel polysaccharide. The results showed that artificial neutral network optimization was more accurate than response surface method optimization, and the reliability of predictive value was greater. The optimum conditions for ultra high pressure extraction of mussel polysaccharide were: the pressure strength 340 MPa, the solid-liquid ratio 42∶1 (mL/g), the pressure holding time 10 min, under this condition, the predicted extraction rate of polysaccharide was 7.18%, while the measured value was 7.12%, with the relative error 0.84%. The process has the advantages of short time, high efficiency, environmental protection etc., and provides technical basis for the development and utilization of mussel polysaccharide.
Publication Date
11-28-2016
First Page
148
Last Page
153
DOI
10.13652/j.issn.1003-5788.2016.11.034
Recommended Citation
Bin, ZHANG; Lanping, SUN; Ying, SHI; and Kang, TU
(2016)
"Optimization on ultra high pressure extraction process of mussel polysaccharide based artificial neural network,"
Food and Machinery: Vol. 32:
Iss.
11, Article 34.
DOI: 10.13652/j.issn.1003-5788.2016.11.034
Available at:
https://www.ifoodmm.cn/journal/vol32/iss11/34
References
[1] LIU Jun, WILLFORS T, XU Cao-lin, et al. Carbohydrates and dietary fibre, bioactive carbohydrates and dietary fibre [J]. Bioactive Carbohydrates, 2015, 5(1): 31-61.
[2] 张缓, 姜启兴, 许艳顺, 等. 采珠后河蚌副产物的营养成分分析及评价[J]. 食品工业科技, 2012, 33(19): 346-349.
[3] 鲁燕骅. ICP-AES分析河蚌肉中14种微量元素[J]. 光谱实验室, 2011, 28(2): 878-884.
[4] 王素雅, 刘长鹏, 吴珊, 等. 酶法制备河蚌功能性产品[J]. 食品科学, 2007, 28(9): 298-302.
[5] JI Cao-fang, JI Yuan-bin, MENG Da-yu. Sulfated modification and anti-tumor activity oflaminarin[J]. Experimental and Therapeutic Medicine, 2013, 6(5): 1 259-1 264.
[6] 孙冉. 河蚌多糖抗乙型肝炎病毒实验研究[J]. 实用预防医学, 2012, 19(2): 253-258.
[7] 范秀萍, 董晓静, 吴红棉, 等. 波纹巴非蛤多糖对高脂模型小鼠血脂的影响[J]. 现代食品科技, 2014(1): 7-10.
[8] 戴志远, 朱凤仙, 张燕平. 河蚌酶解降血压肽的初步分离及性质研究[J]. 中国食品学报, 2009, 9(4): 76-81.
[9] 邹艳君, 雷荣剑. 紫贻贝粗多糖的提取及其体外抗氧化的研究[J]. 海峡药学, 2014(7): 41-43.
[10] KAUR B P, KAUSHIK N, RAO P S, et al. Effect of high-pressureprocessing on physical, biochemical, and microbiologicalcharacteristics of black tiger shrimp (Penaeus monodon) [J]. Food and Bioprocess Technology, 2013, 6(6): 1 390-1 400.
[11] BINDU J, GINSON J, KAMALAKANTH C, et al. Physico-chemical changes in high pressure treated Indian white prawn (Fenneropenaeus indicus) during chill storage [J]. Innovative Food Science & Emerging Technologies, 2013(17): 37-42.
[12] 武艳梅, 陈芹芹, 甘芝霖, 等. 超高压得富含诺卡酮柚皮精油工艺的研究[J]. 高压物理学报, 2013(5): 785-792.
[13] 金雅芳, 邓云. 高静压处理对鱿鱼品质及货架期稳定性变化的影响[J]. 食品与机械, 2015, 31(3): 135-138.
[14] 董建国, 李斌, 赵永红, 等. 转谷氨酰胺酶和超高压技术在重组肉制品中的应用[J]. 食品与机械, 2012, 28(4): 62-64.
[15] 尹琳琳, 杨建涛, 刘海涛, 等. 中温协同超高压处理对草莓汁贮藏品质的影响[J]. 食品与机械, 2016, 32(7): 106-111.
[16] 马锐. 人工神经网络原理[M]. 北京: 机械工业出版社, 2010: 115.
[17] 张良, 刘书成, 章超桦, 等. 神经网络优化牡蛎的高密度CO2杀菌工艺[J]. 农业工程学报, 2011, 12(27): 369-373.
[18] MACHITAN N, COJOCARU C, MEREUTA A, et al. Modeling and optimization of tartaric acid reactive extraction from aqueous solutions: A comparison between response surface methodology and artificial neural network[J]. Separation and Purification Technology, 2010, 75(3): 273-285.
[19] 亓树艳, 王荔, 莫晓燕. 大枣多糖的提取工艺及抗氧化作用研究[J]. 食品与机械, 2012, 23(1): 87-89.
[20] 钟先锋, 黄桂东, 邓泽元, 等. 荷叶多糖得工艺的研究[J]. 食品与机械, 2007, 23(1): 87.
[21] GUO Wan-lin, ZHANG Yi-ben, LU Jin-han, et al. Optimization of fermenta-tion medium for nisin production from Lactococcus lactis sub-sp. lactis using response surface methodology (RSM) com-bined with artificial neural network-genetic algorithm (ANN-GA)[J]. African J. Biotech, 2010(9): 6 264-6 272.
[22] 王莹, 栾天奇, 朴美子. 基于神经网络和遗传算法的醋酸发酵培养基优化[J]. 中国食品学报, 2012, 12(5): 88-94.
[23] 白舸, 张海涛, 刘翠苹, 等. 基于遗传模拟退火算法的WSN广播算法研究[J]. 计算机测量与控制, 2013, 21(11): 3 053-3 056.
[24] 史德芳, 高虹, 程薇, 等. 人工神经网络在食品加工过程模拟控制中的应用[J]. 食品研究与开发, 2009, 30(1): 176-179.
[25] 宋丽军, 侯旭杰, 李雅雯, 等. 核桃青皮中多酚的超高压提取工艺优化[J]. 食品与机械, 2015, 31(4): 178-182.