Abstract
Several physicochemical properties of potato powder were studied, including the material moisture, extrusion temperature and screw speed's influence. The results indicated that with the increase of material moisture, the water-solubility, iodine blue value of potato powder decreasing, water-absorption, oil-absorption increasing, expansibility increased firstly and then decreased, which was the largest in moisture of 35%, while the gelatinization temperature decreased firstly then increased, and the peak, valley, final viscosity, gelatin increasing gradually. Thermal stability was the strongest in the moisture of 30%. With the increasing of extrusion temperature, the water-solubility, iodine blue value increased gradually, water-absorption, oil-absorption decreasing, and the expansibility increased firstly then decreased, which was the largest in 170 ℃. Gelatinization temperature increased gradually, and the peak, valley, final viscosity, thermal stability and gelatin decreasing gradually. With the increasing of screw speed, the water-solubility, iodine blue value increased, but the water-absorption and oil-absorption decreased. Expansibility increasing firstly then decreasing, which was the largest at the speed of 360 r/min. Gelatinization temperature decreased gradually, but the peak, valley and final viscosity and gelatin increased, while, the thermal stability decreased firstly than increased, which was the lowest at the speed of 280 r/min.
Publication Date
12-28-2016
First Page
40
Last Page
44
DOI
10.13652/j.issn.1003-5788.2016.12.009
Recommended Citation
Lilin, ZHANG; Yu, ZHANG; and Hanyu, ZHANG
(2016)
"Effects of different extrusion conditions on physicochemical properties of potato powder,"
Food and Machinery: Vol. 32:
Iss.
12, Article 9.
DOI: 10.13652/j.issn.1003-5788.2016.12.009
Available at:
https://www.ifoodmm.cn/journal/vol32/iss12/9
References
[1] 宋国安. 马铃薯全粉及其系列产品幵发前景广阔[J]. 山东食品科技, 1999(6): 19-20.
[2] 庞芳兰. 发达国家马铃薯产业的发展及启示[J]. 世界农业, 2008(3): 53-55.
[3] 吕世安. 中国马铃薯产业发展现状与趋势[J]. 湖北民族学院学报: 自然科学版, 2002, 20(4): 29-34.
[4] 刘红武. 食品挤压技术[J]. 食品科学, 2000, 21(12): 184-187.
[5] 杜冰, 梁淑如, 程燕锋, 等. 挤压膨化加工过程参数及其影响[J]. 食品与机械, 2008, 24(5): 133-136.
[6] CHINNASWAMMY R, HANA M A. Relationship between amylase content and expansion properties of corn starches[J]. Cereal Chemistry,1988, 65(2): 138-143.
[7] DISSING U, MATTIASSON B. Polyelectrolyte complexes as vehicles for affinity precipitation of proteins[J]. Journal of Biotechnology, 1996, 52(1): 1-10.
[8] 解铁民, 高扬, 张英蕾, 等. 挤压参数对薏米挤出产品物理特性的影响[J]. 食品与机械, 2013, 29(1): 18-22, 101.
[9] 吴卫国, 谭兴和, 熊兴耀, 等. 不同工艺和马铃薯品种对马铃薯颗粒全粉品质的影响[J]. 中国粮油学报, 2006, 21(6): 98-102.
[10] 廖卢艳, 吴卫国. 不同淀粉糊化及凝胶特性与粉条品质的关系[J]. 农业工程学报, 2014,30(15): 332-338.
[11] 冯凤琴, 刘东红, 叶立扬. 甘薯全粉加工及其挤压膨化食品特性的分析研究[J]. 农业工程学报, 2001, 17(3): 99-102.
[12] 赵学伟, 魏益民, 张波. 挤压对小米蛋白溶解性和分子量的影响[J]. 中国粮油学报, 2006, 21(2): 38-422.
[13] 杜双奎. 玉米品种籽粒品质与挤压膨化特性研究[D]. 咸阳: 西北农林科技大学, 2006: 18-24.
[14] 李向阳, 刘传富, 刁恩杰, 等. 双螺杆挤压对膨化小米糊化特性的影响研究[J]. 中国粮油学报, 2009, 24(5): 44-46.
[15] 吕振磊, 李国强, 陈海华. 马铃薯淀粉糊化及凝胶特性研究[J]. 食品与机械, 2010, 26(3): 22-27.
[16] NOOSUK P, HILL S E, PRADIPASENA P, et al. Structure-viscosity relationships for that rice starches[J]. Starch, 2003, 55(8): 337-344.
[17] 黄诚, 周长春, 尹红, 等. 玉米产品挤压膨化特性的影响因素[J]. 食品与发酵工业, 2007, 33(4): 91-93.
[18] 朱永义, 赵仁勇, 林利忠. 挤压膨化对糙米理化特性的影响[J]. 中国粮油学报, 2003, 18(2): 14-16.
[19] OKE M O, AWONORIN S O, WORKNEH T S. Expansion ratio of extruded water yam starches using a single screw extruder[J]. African Journal of Agricultual Research, 2013, 8(9): 750-762.
[20] 凌彬. 营养膨化米果的开发研究[D]. 武汉: 武汉工业学院, 2012: 33-39.
[21] 朱永义, 赵仁勇, 林利忠. 挤压膨化对糙米理化特性的影响[J]. 中国粮油学报, 2003, 18(2): 45-47.
[22] 吴广淼. 紫糯全麦粉的挤压膨化处理及其应用研究[D]. 泰安: 山东农业大学, 2015: 22-24.