Abstract
In recent years, predictive microbiology and risk assessment software have obtained certain development. Predictive microbiology develops the models that describe and predict the growth or decline of microbes under specified environmental conditions. In this paper, an overall description and comparison of the 16 software tools are presented based on some different criteria ,such as the modeling approach, functional modules, the environmental factors (temperature, pH, aw), the different type of media and the different type of the provided microorganisms. For the fields of current food research and microbiological research, the study provide new idea and reference value for food predictive research field, which meets the need of different users for different microbial research.
Publication Date
4-28-2016
First Page
61
Last Page
66,70
DOI
10.13652/j.issn.1003-5788.2016.04.014
Recommended Citation
Jing, LIU; Guangquan, DU; and Xiao, GUAN
(2016)
"A description and comparison on software for food predictive microbiology,"
Food and Machinery: Vol. 32:
Iss.
4, Article 14.
DOI: 10.13652/j.issn.1003-5788.2016.04.014
Available at:
https://www.ifoodmm.cn/journal/vol32/iss4/14
References
[1] McMeekin T A, Olley J, Ratkowsky D A, et a1. Predictive microbiology towards the interface and beyond[J]. International Journal of Food Microbiology, 2002, 73(12): 395-407.
[2] PerezR F, Valero A. Software and data bases: use and application. Predictive microbiology in foods[J]. Springer Briefs in Food, 2013, 5(45): 75-85.
[3] 李秋鹏. 食品预测微生物学三级模型的研究进展[J]. 农产品加工, 2013, 9(2): 123-125.
[4] Buchanan R L, Whiting R C, Damert W C. When is simple good enough: a comparison of the Gompertz, Baranyi, and three-phase linear models for fitting bacterial growth curves[J]. Food Microbiology, 1997, 14(4): 313-326.
[5] 周康, 刘寿春, 李平兰, 等. 食品微生物生长预测模型研究新进展[J]. 微生物学通报, 2008, 35(4): 589-594.
[6] Augustin J C, Zuliani V, Cornu M, et a1. Growth rate and growth probability of Listeria monocytogenes in dairy, meat and seafood products in suboptimal conditions[J]. Applycation Microbiology, 2005, 99(5): 1019-1042.
[7] Walls I, Scott V N. Use of predictive microbiology in microbial food safety risk assessment[J]. International Journal of Food Microbiology, 1997, 36(4): 97-102.
[8] Bean D, Bourdichon F, Bresnahan D, et al. Risk assessment approaches to setting thermal processes in food manufacture[J]. ILSI Europe Report Series, 2012, 82(3): 1-40.
[9] 赵勇, 王敬敬, 唐晓阳. 水产品中食源性致病微生物风险评估研究现状[J]. 上海海洋大学学报, 2012, 21(5): 899-905.
[10] 陈君石. 建立国家食品安全风险评估中心的意义与挑战[J]. 中华预防医学, 2012, 46(1): 9-11.
[11] Fanny Tenenhaus-Aziza, Mariem Ellouze. Software for predictive microbiology and risk assessment: A description and comparison of tools presented at the ICPMF8 Software Fair[J]. Food Microbiology, 2014, 12(4): 1-10.
[12] 田静. 熟肉制品中单增李斯特菌的风险评估及风险管理措施的研[D]. 北京: 人民卫生出版社, 2010: 23-25.
[13] 张培培. 冷鲜猪肉中主要病原菌检测及单增李斯特菌的生长预测模型比较[D]. 浙江: 教育出版社, 2011: 50-54.
[14] Koseki S. Microbial Responses Viewer (MRV): a new ComBase-derived database of microbial responses to food environments[J]. Food Microbiology, 2009, 134(23): 75-82.
[15] Masana M, Baranyi J. Growth/no growth interface of Brochothrix thermosphacta as a function of pH and water activity[J]. Food Microbiology, 2000, 17(5): 485-493.
[16] Geeraerd A H, Valdramidis V P. A freeware tool to assess non-log-linear microbial survivor curves[J]. Food Microbiology, 2005, 102(12): 95-105.
[17] McDonald K, Sun D. Predictive food microbiology for the meat industry[J]. International Journal of Food Microbiology, 1999, 52(6): 1-27.
[18] Kusisk A, Kera J A, Kernstine K H. Autonomous decision making: A data mining approach[J]. IEEE Transactions on Neural Networks, 2000, 4(4): 274-276.
[19] Alfaro B, Pin C. Modelling the effect of the temperature and carbon dioxide on the growth of spoilage bacteria in packed fish products[J]. Food Control, 2013, 29(2): 429-437.