Abstract
Raman spectroscopy was employed to detect the allura red in hard candy using portable raman spectrometer. After attributed and analyzed the raman peaks of allura red by density functional theory method and normal raman spectroscopy, six characteristic raman peaks were confirmed which were 1 222, 1 272, 1 330, 1 408, 1 500 and 1 580 cm-1, respectively. Then the standard curve was established under the characteristic raman peaks with 1 500 cm-1. The results indicated that the curve possessed a good linear relationship between 0.1~1.0 g/kg, the determination coefficient was 0.995, average recovery of allura red ranged from 95.99% to 102.92%, and the relative standard deviation (RSD) was between 3.19%~5.59%. The limits of detection (LOD) of allura red reached to 0.1 g/kg, which conformed to the national standard. These results would provide scientific reference for raman spectroscopy rapid detection, especially detected the allura red in hard candy.
Publication Date
4-28-2016
First Page
76
Last Page
79,142
DOI
10.13652/j.issn.1003-5788.2016.04.017
Recommended Citation
Si, CHEN; Ping, GUO; Pengjie, LUO; Ruimei, WU; Wenjun, WANG; and Tian, FANG
(2016)
"Rapid detection of allura red in hard candy using raman scatter spectroscopy,"
Food and Machinery: Vol. 32:
Iss.
4, Article 17.
DOI: 10.13652/j.issn.1003-5788.2016.04.017
Available at:
https://www.ifoodmm.cn/journal/vol32/iss4/17
References
[1] 缪少霞, 王鹏, 徐渊金, 等. 植物源天然食用色素及其开发利用研究进展[J]. 食品研究与开发, 2012, 33(7): 211-216.
[2] 孙娅娜, 朱蕾, 崔芳. 高效液相色谱法测定糕点中的柠檬黄、日落黄和亮蓝[J]. 食品科技, 2011, 36(12): 310-312.
[3] 周法东, 刘宪军, 来创业, 等. 超声波辅助萃取—液相色谱串联质谱法检测肉灌肠中的8种红色色素[J]. 肉类研究, 2013, 27(6): 19-21.
[4] 龚强, 丁利, 肖家勇, 等. 免疫PCR方法快速检测饮料中的赤藓红[J]. 食品与机械, 2014, 30(1): 75-77.
[5] 李海波, 徐抒平, 刘钰, 等. 等离激元激励表面增强拉曼光谱检测技术与仪器[J]. 中国科学, 2013, 43(12): 1 669-1 685.
[6] 蔺磊, 吴瑞梅, 刘木华, 等. 噻菌灵农药的表面增强拉曼光谱分析[J]. 光谱学与光谱分析, 2015, 35(2): 404-408.
[7] 欧阳思怡, 叶冰, 刘燕德. 表面增强拉曼光谱法在农药残留检测中的研究进展[J]. 食品与机械, 2013, 29(1): 243-246.
[8] Aline L F, Diego P, Hélio F D S, et al. Adsorption study of antibiotics on silver nanoparticle surfaces by surface-enhanced Raman scattering spectroscopy [J]. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2015, 136(136PB): 979-985.
[9] Smith G P S, Gordon K C, Holroyd S E. Raman spectroscopic quantification of calcium carbonate in spiked milk powder samples [J]. Vibrational Spectroscopy, 2013, 67(7): 87-91.
[10] 张宗绵, 刘睿, 徐敦明, 等. Au@SiO2核壳结构—表面增强拉曼光谱原位检测食品中的酸性橙Ⅱ[J]. 化学学报, 2012, 70(16): 1 686-1 689.
[11] 杨昌彪, 宋光林, 包娜, 等. 近红外光谱与表面增强拉曼光谱对红酒中非法添加剂苋菜红的分析研究[J]. 食品科技, 2014, 39(6): 294-298.
[12] 李言, 谢云飞, 钱和, 等. 表面增强拉曼光谱快速检测赤藓红[J]. 食品工业科技, 2013, 34(11): 307-309.
[13] Haughey S A, Galvin-King P, Ho Y C, et al. The feasibility of using near infrared and Raman spectroscopic techniques to detect fraudulent adulteration of chili powders with Sudan dye [J]. Food Control, 2015, 48: 75-83.
[14] Vlastimil P, Martin J. Quantitative SERS analysis of azorubine (E 122) in sweet drinks [J]. Analytical Chemistry, 2015, 87(5): 2 840-2 844.
[15] 续欣欣. 敢问糖果业的未来在何方[J]. 中外食品, 2007(1): 28-31.
[16] 廖萍坚, 翁小红, 吴文君, 等. 分光光度法测定硬质糖果中诱惑红、柠檬黄、亮蓝的含量[J]. 湛江师范学院学报, 2013, 34(6): 64-68.
[17] 朱自莹, 顾仁敖, 陆天虹. 拉曼光谱在化学中的应用[M]. 沈阳: 东北大学出版社, 1998: 71-158 .
[18] Dollish F R, Fateley W G, Bentley F F. 有机化合物的特征拉曼频率[M]. 朱自莹, 译. 北京: 中国化学会, 1980: 40-145.