Abstract
The flow field uniformity in refrigerated container is one of the important factors that affect the food storage quality. Based on numerical simulation approach, three-dimensional unsteady computational fluid dynamics (CFD) model of refrigerated container has been established to find the air flow characteristics in this paper. A computational fluid dynamics program FLUENT has been used to predict the unsteady air flow and temperature fields inside the refrigerated container. The air flow and temperature fields inside the refrigerated container and the effect of stacking method on the air flow and temperature fields have been discussed. The numerical result shows that the air flow and temperature distribution are very serious for the refrigerated container. And the temperature of the front and the rear portion is obviously different and that is not conducive to storage of goods. It also found that different wind speed and stacking method greatly affects temperature flow field distribution in the cabinet, and the heat transfer performance. Integrated temperature and velocity field and food storage, the reasonable air supply rate of refrigerated container is about 5 m/s. Four-piece stack is superior to the other two stacking method. Method of contrast verification was used to verify the correctness of the model in this paper. And the average deviation of experimental data and simulated result is about 1.1 ℃, which showed that the model was appropriate to the simulation of the flow distribution in refrigerated container.
Publication Date
4-28-2016
First Page
136
Last Page
142
DOI
10.13652/j.issn.1003-5788.2016.04.033
Recommended Citation
Jinjin, TIAN; Sasa, WANG; Zhe, ZHANG; Man, LI; Susu, YU; and Junjie, HAO
(2016)
"Dynamic numerical simulation and experimental research on internal flow field of refrigerated containers,"
Food and Machinery: Vol. 32:
Iss.
4, Article 33.
DOI: 10.13652/j.issn.1003-5788.2016.04.033
Available at:
https://www.ifoodmm.cn/journal/vol32/iss4/33
References
[1] 黄成洲, 谢如鹤. 我国食品冷链物流的发展与对策[J]. 商品储运与养护, 2007, 29(4): 37-39.
[2] 张连军. 浅析我国食品冷链物流的现状及对策[J]. 物流技术, 2006(1): 102-104.
[3] 周俊. 我国铁路冷藏集装箱运输发展及运营问题研究[D]. 北京: 北京交通大学, 2009: 3-4.
[4] 陈焕新, 蔡敏, 张春安. 冷板冷藏车运输过程中冷冻货物的温度分布[J]. 流体机械, 2005, 33(4): 65-68.
[5] 汤毅, 谢晶, 王金锋, 等. 计算流体力学在冷库优化中的应用研究进展[J]. 食品与机械, 2011, 27(5): 186-189.
[6] Zertal-Menia N, Moureh J, Flick D. Simplified modelling of air flows in refrigerated vehicles[J]. International Journal of Refrigeration, 2002, 25(5): 660-672.
[7] Rodríguez-Bermejoa J, Barreirob P, Roblaa J I, et al. Thermal study of a transport container[J]. Journal of Food Engineering, 2007, 80(2): 517-527.
[8] Ersin Alptekin, Mehmet Akif Eazn. Flow and heat transfer characteristics an empty refrigerated container[J]. Progress in Energy and the Environment, 2014, 62(1): 641-652.
[9] 汤毅, 谢晶, 王金锋, 等. CFD预测风机摆设形式对冷库的影响[J]. 食品与机械, 2012, 28(1): 124-128.
[10] Moureh J, Tapsoba S, Derens E, et al. Air velocity characteristics within vented pallets loaded in a refrigerated vehicle with and without air ducts[J]. International Journal of Refrigeration, 2009(32): 220-234.
[11] 郭嘉明, 吕恩利. 冷藏运输厢体结构对流场影响的数值模拟[J]. 农业工程学报, 2012, 28(增刊): 74-78.
[12] 孟华, 杨培志. 冷板冷藏车内冷冻板冻结过程数学模型的建立[J]. 制冷与空调, 2004(4): 8-11.
[13] 王以忠, 胡春园, 陈绍慧, 等. 冷藏车内温度场和湿度场的数值模拟研究[J]. 保鲜与加工, 2010, 10(3) : 26-28.
[14] 杨磊, 汪小旵. 冷藏库预冷降温过程中温度场的数值模拟与试验研究[J]. 西北农林科技大学学报, 2008, 36(9): 219-223.
[15] 孙海亭, 周轲, 杨艳青, 等. 利用CFD模型研究苹果冷藏库内的空气流动[J]. 保鲜与加工, 2014, 14(4): 27-33.
[16] 申江, 李超, 苗惠, 等. 冷藏运输车内气体流场的数值模拟及分析[J]. 低温与超导, 2010, 38(11): 46-52.
[17] 陶文铨. 数值传热学[M]. 2 版. 西安: 西安交通大学版社, 2002: 33-34.
[18] 杨世铭, 陶文铨. 传热学[M]. 3 版. 北京: 高等教育出版社, 1998: 88-89.
[19] 季阿敏. 果蔬气调贮藏冷却阶段温度变化的数值模拟及验证[J]. 农业工程学报, 2006, 22(5): 24-27.
[20] 张哲, 郭永刚, 田津津, 等. 冷板冷藏汽车箱体内温度场的数值模拟及试验[J]. 农业工程学报, 2013, 29(4): 18-24.