Abstract
“Hongyan” strawberry was selected as test materials, with the storage temperature of 4 ℃, humidity of 85%~95%, to detect the strawberry freshness based on flavor. Electronic nose (e-nose) and the single ethanol sensor were used to collect the odor of strawberry during storage period. The strawberry was divided into four stages based on the changes of sensory evaluation score and Principal component analysis. By using the partial least squares discriminant analysis (PLS-DA) and classification support vector machine(SVM-C), the model of fresh degree of strawberry was established based on odor discrimination. The overall accuracy for modeling group and validation group were respective 84.2% and 88.3% based on PLS-DA. The overall accuracy for modeling group and validation group were 99.2% and 97.7% respectively, based on SVM-C method. The overall accuracy for modeling group and validation group were 83.3% and 86.70% based on PLS-DA method, 90.8% and 90.0% based on PLS-DA method. This research can supply technical help to monitor the freshness of strawberry change during storage and transportation.
Publication Date
5-28-2016
First Page
117
Last Page
121
DOI
10.13652/j.issn.1003-5788.2016.05.029
Recommended Citation
Jing, XU; Xiujie, ZHAO; Ke, SUN; Zhuo, WANG; and Kang, TU
(2016)
"Determination on freshness of strawberry based on electronic nose and ethanol sensor,"
Food and Machinery: Vol. 32:
Iss.
5, Article 29.
DOI: 10.13652/j.issn.1003-5788.2016.05.029
Available at:
https://www.ifoodmm.cn/journal/vol32/iss5/29
References
[1] Purmmag, Olena K, Stephen M N, et al. Sensory analysis of individual strawberry fruit and comparison with instrumental analysis[J]. Postharvest Biology and Technology, 2009, 52(2): 164-172.
[2] Polyanna A S, Celeste M P A, Estela R Q, et al. Storage of strawberries (Fragaria ananassa L.) cv. ‘Oso Grande’, subjected to1-MCP[J]. Acta Scientiarum, 2012, 34(3): 353-358.
[3] 徐放, 张鹏宇, 吴小虎, 等. 不同草莓保鲜方法的比较研究[J]. 安徽农业科学, 2013(3): 1 237-1 239, 1 242.
[4] 王宠, 梁琪, 甘伯中, 等. 电子鼻在干酪风味检测中的应用[J]. 食品与机械, 2012, 28(2): 250-253.
[5] 张瑶, 丁武. 利用电子鼻区分羊奶中不同浓度抗生素[J]. 食品与机械, 2011, 27(6): 144-146.
[6] Barbri N, Llobet E, Bari N, et al. Electronic nose based on metal oxide semiconductor sensors as an alternative technique for the spoilage classification of red meat[J]. Sensors, 2008, 8(1): 142-156.
[7] 闫李慧, 王金水, 渠琛玲, 等. 仿生电子鼻及其在食品工业中的应用研究[J]. 食品与机械, 2010, 26(6): 156-159.
[8] 解万翠, 杨锡洪, 章超桦, 等. 气味指纹分析技术在虾风味料检测中的应用[J]. 食品与机械, 2011, 27(6): 119-121.
[9] Li Chang-ying, Krewerb G W, Sheng Ji-ping, et al. Gas sensor array for blueberry fruit disease detection and classification[J]. Postharvest Biology and Technology, 2010, 55(3): 144-149.
[10] Zhang Bo, Xi Wan-peng, Wei Wen-wen, et al. Changes in aromarelated volatiles and gene expression during low temperature storage and subsequent shelf-life of peach fruit[J]. Postharvest Biology and Technology, 2011, 60: 7-16.
[11] Neclad, Antonio C, Steven A, et al. Classification of impacted blueberries during storage using an electronic nose [J]. Journal of Science Food Agriculture, 2011, 91(9): 1 722-1 727.
[12] 张振, 李臻锋, 宋飞虎, 等. 电子鼻结合化学计量法用于检测黄酒酒龄[J]. 食品与机械, 2015, 31(3): 57-61.
[13] 狄华涛, 杨敬辉, 陈宏州, 等. 基于乙醇含量的杨梅果实腐烂指数预测模型研究[J]. 食品科学, 2012, 33(18): 290-293.
[14] 邢宏杰, 狄华涛, 蔡琰, 等. 基于乙醇质量分数的草莓果实腐烂指数预测模型[J]. 农业工程学报, 2010, 26(5): 352-356.
[15] 王兴亚, 庞广昌, 李阳. 电子舌与真实味觉评价的差异性研究进展[J]. 食品与机械, 2016, 32(1): 213-216, 220.
[16] 胡花丽, 李鹏霞, 王毓宁, 等. 气调贮藏对草莓细胞壁酶活性的影响[J]. 食品与机械, 2011, 27(1): 98-101.
[17] 丛建民. Nisin在草莓保鲜中的应用研究[J]. 食品与机械, 2008, 24(2): 131-133.
[18] Cardelli C, Labuza T P. Application of weibull hazard analysisto the determination of the shelf life of roasted and ground coffee[J]. LWT-Food Science and Technology, 2001, 34(5): 273-278.
[19] Ignat I, Volf I, Popa V I. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables[J]. Food Chemistry, 2011, 126(4): 1 821-1 835.
[20] 李静萍, 谢邦昌. 多元统计分析方法与应用[M]. 北京: 中国人民大学出版社, 2005: 21.
[21] Barker M, Rayens W. Partial least squares for discrimination[J]. Journal of Chemometrics, 2003, 17(3): 166-173.
[22] Brereton R G. Chemometrics for pattern recognition[M]. [S. l.]: A John Wiley & Son, Ltd., UK, 2009: 199-200.
[23] Vapnik V. Statistical learning theory[M]. Chichester UK: Wile, 1998: 291.
[24] 纪祥洲, 李亮, 桑志成, 等. 电子鼻检测冻藏草莓品质研究[J]. 中国农学通报, 2014, 30(36): 304-309.