Abstract
The thermal insulation panels of refrigerated container using embedded vacuum insulation panels are high performance thermal insulations with low heat conductivity and promising energy savings. Considering the effect of coverage percentage of vacuum insulation panels (VIPs) on inner temperature distribution of refrigerated container, a model based on computational fluid dynamics (CFD) was used to numerically simulate the inner temperature distribution of a test refrigerated container. The effect of coverage percentage of VIPs on the insulation performance and temperature distribution uniformity was analyzed numerically and experimentally. The results illustrated that the insulation panels using VIPs can improve the insulation performance of refrigerated container and modify the inner uniformity of temperature distribution temperature. With the same refrigerating output, the maximum difference of inner temperature was reduced 40% as the coverage percentage of VIPs increased from 0 to 87%, and the average inner temperature drop of refrigerated container can be reduced 43%. When the coverage rate is greater than 66%, the internal temperature field tends to be stable.
Publication Date
7-28-2016
First Page
99
Last Page
102,165
DOI
10.13652/j.issn.1003-5788.2016.07.024
Recommended Citation
Jun, LI; Dong, LI; Hailin, WANG; Jiekun, LIU; and Huazhong, LU
(2016)
"Effect of coverage percentage of vacuum insulation panels on inner temperature distribution of refrigerated container,"
Food and Machinery: Vol. 32:
Iss.
7, Article 24.
DOI: 10.13652/j.issn.1003-5788.2016.07.024
Available at:
https://www.ifoodmm.cn/journal/vol32/iss7/24
References
[1] 温永刚, 王先荣, 董亮, 等. 真空绝热板(VIP)应用技术研究[J]. 低温工程, 2010(6): 29-32, 45.
[2] ALAM M, SINGH H, LIMBACHIYA M C. Vacuum Insulation Panels (VIPs) for building construction industry – A review of the contemporary developments and future directions [J]. Applied Energy, 2011, 88: 3 592-3 602.
[3] 娄宗瑞, 曹丹, 阚安康, 等. 冷藏集装箱内部温度场的特性研究[J]. 制冷, 2013, 32(1): 23-25.
[4] 吕正光, 张贤中, 陈士发. 真空隔热板在冰箱上的应用研究[J]. 电器, 2013(S1): 670-673.
[5] 韩佳伟, 赵春江, 杨信廷, 等. 基于CFD数值模拟的冷藏车节能组合方式比较[J]. 农业工程学报, 2013(19): 55-62.
[6] 孙永才. 冷藏车热工性能分析及其真空隔热材料研制[D]. 广州: 广州大学, 2011: 3-6.
[7] 刘杰坤, 陆华忠, 李君, 等. 冷藏运输车真空隔热厢体的温度场特性仿真研究[J]. 食品与机械, 2014, 30(4): 137-141.
[8] 刘杰坤, 李君, 陆华忠, 等. 冷藏运输隔热车厢研究进展[J]. 食品工业, 2014(12): 203-207.
[9] 赵春江, 韩佳伟, 杨信廷, 等. 基于CFD的冷藏车车厢内部温度场空间分布数值模拟[J]. 农业机械学报, 2013, 44(11): 168-173.
[10] MOUREH J, DERENS E. Numerical modelling of the temperature increase in frozen food packaged in pallets in the distribution chain[J]. International Journal of Refrigeration, 2000, 23(7): 540-552.
[11] LAGUERRE O, HOANG M H, FLICK D. Heat transfer modelling in a refrigerated display cabinet: the influence of operating conditions[J]. J. Food Eng., 2012, 108(2): 353-364.
[12] 汤毅, 谢晶, 王金锋, 等. CFD预测风机摆设形式对冷库的影响[J]. 食品与机械, 2012, 28(1): 124-128.
[13] 杜子峥, 谢晶, 朱进林. 低温恒温箱的非稳态数值模拟及验证[J]. 食品与机械, 2014, 30(5): 126-132, 172.
[14] 王文文. 冷藏车保温材料对内部环境影响的模拟研究[D]. 北京: 北京建筑工程学院, 2012: 12-14, 44.
[15] 郭嘉明, 吕恩利, 陆华忠, 等. 冷藏运输厢体结构对流场影响的数值模拟[J]. 农业工程学报, 2012, 28(S1): 74-80.