Abstract
Using purple sweet potato as material, the effects were evaluated, including microwave power, microwave treatment time, vacuum degree, ratio of liquid to solid and gelatin addition on sugar permeability of purple sweet potato under low concentration sugar condition. Response surface methodology was used to determine the five process parameters based on reducing sugar content in purple sweet potato preserved fruit. Results showed that the optimal process conditions were liquid-material ratio of 7∶1 (g/g) (the gelatin content of 1.0%, ratio of maltose sugar to sucrose of 35∶5, and maltose sugar and sucrose concentration of 20%, respectively), microwave power of 560 W, microwave treatment time of 7 min, and vacuum degree of 0.05 MPa. At this optimum point, reducing sugar content and anthocyanin retention rate were found to be 3.60 mg/g and 93%, respectively, and the obtained reserved purple sweet potato had the best sensory quality.
Publication Date
7-28-2016
First Page
196
Last Page
201
DOI
10.13652/j.issn.1003-5788.2016.07.044
Recommended Citation
Shunmin, WANG; Yong, LI; and Weibing, CAO
(2016)
"Study on process of sugar permeation by microwave vacuum technology in preserved fruit making of low sugar purple sweet potato,"
Food and Machinery: Vol. 32:
Iss.
7, Article 44.
DOI: 10.13652/j.issn.1003-5788.2016.07.044
Available at:
https://www.ifoodmm.cn/journal/vol32/iss7/44
References
[1] 刘阳, 廖卢艳, 傅亚平, 等. 变温压差膨化干燥法制备紫薯生全粉研究[J]. 食品与机械, 2016, 32(2): 149-153, 214. .
[2] 李小艳, 李高阳, 任国谱. 响应面联合因子设计优化提取紫薯花色苷[J]. 食品与机械, 2015, 31(3): 194-197, 201.
[3] 张慜, 王瑞. 果蔬微波联合干燥技术研究进展[J]. 干燥技术与设备, 2005, 3(3): 107-110.
[4] ZHANG MIN, TANG JIAN, MUJUMDAR AS, et al. Trends in microwave-related drying of fruits and vegetables [J]. Trends in Food Science & Technology, 2006, 17(10): 524-534.
[5] LATORRE M E, BONELLI P R, ROJAS A M, et al. Microwave inactivation of red beet (Beta vulgaris L. var. conditiva) peroxidase and polyphenoloxidase and the effect of radiation on vegetable tissue quality [J]. Journal of Food Engineering, 2012, 109(4): 676-684.
[6] ZIELINSKA M, SADOWSKI P, BLASZCZAK W. Freezing/thawing and microwave-assisted drying of blueberries (Vaccinium corymbosum L.) [J]. Lwt-Food Science and Technology, 2015, 61(1): 555-563.
[7] WRAY D, RAMASWAMY H S. Microwave-osmotic dehydration of cranberries under continuous flow medium spray conditions [J]. International Journal of Microwave Science and Technology, 2013, DOI: 10.1155/2013/207308.
[8] 祝美云, 魏征, 郭晓晖. 低糖猕猴桃果脯微波渗糖工艺研究[J]. 食品与机械, 2010, 26(3): 134-137.
[9] 魏征, 祝美云, 邵建峰. 低糖苹果果脯微波渗糖工艺影响因素研究[J]. 食品科学, 2010, 31(18): 37-40.
[10] 马艳弘, 周剑忠, 王英, 等. 低糖蓝莓果脯的微波渗糖工艺[J]. 食品科学, 2013, 34(10): 50-54.
[11] 王愈, 马世敏. 微波渗糖加工低糖橙皮果脯的工艺研究[J]. 中国食品学报, 2011, 11(1): 91-97.
[12] 祝美云, 魏征, 高峰. 不同微波渗糖工艺对低糖果脯维生素C保存的影响[J]. 果树学报, 2010, 27(2): 299-302.
[13] 赵希艳, 许瑞, 李润丰, 等. 微波姜脯渗糖工艺的研究[J]. 食品工业, 2013, 34(1): 60-62.
[14] 祝美云, 魏征, 郭祥永. 可食性胶体添加对低糖猕猴桃果脯微波渗糖效果的影响[J]. 果树学报, 2011, 28(4): 635-640.
[15] 谭红军, 杨勇, 吴振, 等. 枇杷果脯真空渗糖和微波真空干燥工艺参数优化[J]. 安徽农业科学, 2013(5): 2 254-2 256.
[16] 祝美云, 魏征, 陈广起. 低糖果脯生产工艺中护色与硬化效果的研究[J]. 食品科学, 2010, 31(4): 81-84.
[17] 朱海霞, 石瑛, 张庆娜, 等. 3,5-二硝基水杨酸(DNS)比色法测定马铃薯还原糖含量的研究[J]. 中国马铃薯, 2005, 19(5): 14-17.
[18] 韩永斌. 紫甘薯花色苷提取工艺与组分分析及其稳定性和抗氧化性研究[D]. 南京: 南京农业大学, 2007: 42.
[19] 张建威, 卢千慧, 祝美云. 低糖雪莲果果脯微波烫漂护色和渗糖工艺优化[J]. 江苏农业科学, 2012, 40(8): 249-252.
[20] 邓茹月, 曾海英, 叶双全, 等. 真空糖渍对刺梨果脯品质及风味的影响[[J]. 食品与机械, 2014, 30(4): 220-223.
[21] 艾启俊, 郭洋. 苹果脯真空渗糖技术影响因素的研究[J]. 北京农学院学报, 2004, 19(1): 42-44, 57.