Abstract
In order to solve traditional fruit grading detection system of graded speed slow, huge system and high cost, puts forward the detection system based on SOPC fruit grading, and the whole control system was integrated into a FPGA chip, which can be detached from the PC platform, greatly reduces the cost. Through the Soble algorithm to achieve the edge of the fruit image extraction, and the method of histogram of the size of the fruit to distinguish, the fruit could be accurately classified. Test results show that this system has the advantages of fast detection speed, short development cycle, and can be upgraded online, which has a good application space.
Publication Date
8-28-2016
First Page
95
Last Page
97,201
DOI
10.13652/j.issn.1003-5788.2016.08.023
Recommended Citation
Lu, QIAO and Jing, CHEN
(2016)
"Research on fruit grading detection system based on SOPC,"
Food and Machinery: Vol. 32:
Iss.
8, Article 23.
DOI: 10.13652/j.issn.1003-5788.2016.08.023
Available at:
https://www.ifoodmm.cn/journal/vol32/iss8/23
References
[1] 葛飞, 苏铁青, 岳晓禹. 单片机在重量分捡机中应用系统设计的研究[J]. 食品与机械, 2005, 21(3): 54-56.
[2] 葛飞, 王斌, 苏铁青. 重量分捡机单片机控制系统的抗干扰设计[J]. 食品与机械, 2004, 20(6): 39-41.
[3] 胡向峰, 王黎明. 基于SOPC技术的高速数据采集系统的设计[J]. 微电子学与计算机, 2009, 26(6): 62-65.
[4] 赵擎天, 尉广军, 姚义. 基于SOPC的多路并行同步数字信号采集系统设计[J]. 军械工程学院学报, 2011, 23(3): 60-65.
[5] 曹乐平, 谢培甫. vfb基于补偿模糊神经网络的立式转鼓水果分级系统设计[J]. 食品与机械, 2007, 23(2): 70-73.
[6] 施健, 何建国, 张冬, 等. 基于计算机视觉鲜枣大小分级系统研究[J]. 食品与机械, 2013, 29(5): 134-137.
[7] 党宏社, 宋晋国. 基于ARM 的嵌入式水果大小检测与分级系统的实现[J]. 四川农业大学学报, 2011, 29(1): 89-92.
[8] 李明, 赵勋杰. Sobel 边缘检测的FPGA实现[J]. 现代电子技术, 2009(16): 44-46.
[9] 展慧, 李小昱. 基于机器视觉的板栗分级检测方法[J]. 农业工程学报, 2010, 26(4): 327-331.
[10] 袁江南. 一种图像边缘检测FPGA实现的快速设计方法[J]. 厦门理工学院学报, 2010, 18(1): 56-59.
[11] 安爱琴, 余泽通. 基于机器视觉的苹果大小自动分级方法[J]. 农机化研究, 2008(4): 163-166.
[12] 张辉, 曲仕茹. 基于FPGA硬件实现的图像边缘检测及仿真[J]. 计算机仿真, 2010, 27(3): 232-236.