•  
  •  
 

Abstract

The soluble solid content (SSC), one of the important index for evaluating the qualities, in a single grape were measure real-timely and non-destructively in this study, This might help to improve the management of the fruits as well as prolong their storage time, satisfying the needs of different customers. The near infrared (NIR) spectra of grapes was detected by using a hand-held NIR spectrometer, wavelength ranging from 950 to 1, 650 nm. Based on partial least squares (PLS) data, the prediction model for SSC content in grapes was established. In order to reduce redundancy and uninformative variables while increase prediction accuracy and stability of this model, sensitive wavelength variables were selected by uninformative variable elimination (UVE) and random frog (RF), respectively. The results showed that the SSC predictive model established by RF-PLS is better than the ones done by full-spectrum PLS and UVE. R2c, R2cv and R2pof RF-PLS were 0.960 5, 0.933 4 and 0.930 4, and RMSEC, RMSECV and RMSEP of it were 0.638 2, 0.829 9 and 0.868 8, respectively. Our results showed that the spectra based on portable NIR spectrometer could be successfully applied in prediction of SSC content in a single grape with high prediction accuracy after wavelength selection for the model.

Publication Date

9-28-2016

First Page

39

Last Page

43

DOI

10.13652/j.issn.1003-5788.2016.09.009

References

[1] 国家统计局. 中国统计年鉴[Z]. 北京: 中国统计出版社, 2015: 267.
[2] 吴桂芳, 黄凌霞, 何勇. 葡萄浆果糖度可见/近红外光谱检测的研究[J]. 光谱学与光谱分析, 2008, 28(9): 2 090-2 093.
[3] 李敏. 近红外光谱技术在水果无损检测中的最新研究进展[J]. 绿色科技, 2013(10): 215-218.
[4] 屈亚堃, 宫元娟. 近红外光谱技术在苹果品质无损检测中的应用[J]. 农业科技与装备, 2014(6): 32-33.
[5] 赵珂, 熊艳, 赵敏. 基于近红外光谱技术的脐橙快速无损检测[J]. 激光与红外, 2011, 41(6): 649-652.
[6] 介邓飞, 谢丽娟, 饶秀勤, 等. 近红外光谱变量筛选提高西瓜糖度预测模型精度[J]. 农业工程学报, 2013(12): 264-270.
[7] 崔秀帅, 唐荣年, 杨举华, 等. 芒果无损检测方法的研究现状及发展趋势[J]. 贵州农业科学, 2013, 41(7): 167-170.
[8] 吕刚, 杨海清. 基于光谱技术的葡萄活体可溶性固体含量在线检测研究[J]. 红外, 2012, 33(10): 43-48.
[9] 陈辰, 鲁晓翔, 张鹏, 等. 玫瑰香葡萄贮藏期间糖酸品质的近红外检测[J]. 食品与发酵工业, 2015(6): 175-180.
[10] 徐洪宇, 张京芳, 侯力璇, 等. 基于FT-NIR光谱技术检测酿酒葡萄中可溶性固形物含量[J]. 中国食品学报, 2013, 13(11): 153-159.
[11] 王亚红. 葡萄中糖含量的近红外检测技术研究与仪器开发[D]. 桂林: 桂林电子科技大学, 2014: 121-125.
[12] YAN Hui, LU Dao-li, CHEN Bin, et al. Development of a hand-held near infrared system based on an Android OS and MicroNIR, and its application in measuring soluble solids content in Fuji apples[J]. NIR news, 2014, 25(4): 16.
[13] ZOU Xiao-bo, ZHAO Jie-wen, POVEY M J W, et al. Variables selection methods in near-infrared spectroscopy[J]. Analytica Chimica Acta, 2010, 667(1/2): 14-32.
[14] 褚小立, 袁洪福, 陆婉珍. 近红外分析中光谱预处理及波长选择方法进展与应用[J]. 化学进展, 2004, 16(4): 528-542.
[15] LI Hong-dong, XU Qing-song, LIANG Yi-zeng. Random frog: an efficient reversible jump Markov Chain Monte Carlo-like approach for variable selection with applications to gene selection and disease classification[J]. Anal Chim Acta, 2012(740): 20-26.
[16] KASEMSUMRAN S, DU Yi-ping, LI Bo-yan, et al. Moving window cross validation: a new cross validation method for the selection of a rational number of components in a partial least squares calibration model[J]. Analyst, 2006, 131(4): 529-537.
[17] KOSHOUBU J, IWATA T, MINAMI S. Elimination of the uninformative calibration sample subset in the modified UVE(Uninformative Variable Elimination)-PLS (Partial Least Squares) method[J]. Anal Sci., 2001, 17(2): 319-22.
[18] JIANG Hui, LIU Guo-hai, MEI Cong-li, et al. Measurement of process variables in solid-state fermentation of wheat straw using FT-NIR spectroscopy and synergy interval PLS algorithm[J]. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 2012(97): 277-283.
[19] LI Jiang-bo, GUO Zhi-ming, HUANG Wen-qiang, et al. Near-infrared spectra combining with CARS and SPA algorithms to screen the variables and samples for quantitatively determining the soluble solids content in strawberry[J]. Guang Pu Xue Yu Guang Pu Fen Xi, 2015, 35(2): 372-8.
[20] CAO Nan-ning, WANG Jia-hua, LI Peng-feng, et al. Study on Variable Selection of NIR Spectral Information Based on GA and SCMWPLS[J]. Spectroscopy and Spectral Analysis, 2010, 30(4): 915-919.
[21] 丁光辉. PLS和GA应用于部分有机污染物的QSAR研究[D]. 大连: 大连理工大学, 2006: 97-99.
[22] 吴迪, 吴洪喜, 蔡景波, 等. 基于无信息变量消除法和连续投影算法的可见—近红外光谱技术白虾种分类方法研究[J]. 红外与毫米波学报, 2009, 28(6): 423-427.
[23] 陈立旦, 赵艳茹. 可见—近红外光谱联合随机蛙跳算法检测生物柴油含水量[J]. 农业工程学报, 2014(8): 168-173.
[24] 唐建平. 近红外光谱在水果品质检测中的应用[J]. 北京农业, 2014(24): 232-232.
[25] YAN Hui, HAN Bang-xing, WU Qiong-ying, et al. Rapid detection of Rosa laevigata polysaccharide content by near-infrared spectroscopy[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2011, 79(1): 179-84.
[26] 丁姣, 蔡建荣, 张海东, 等. 近红外结合Si-ELM检测食醋品质指标[J]. 食品与机械, 2012, 28(1): 93-96.
[27] 安泉鑫, 陈莉, 庞林江, 等. 近红外光谱技术在食品中的应用进展[J]. 食品与机械, 2012, 28(5): 239-242.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.