•  
  •  
 

Abstract

This study collected the near infrared (NIR) hyperspectral images of 150 astringent persimmons, with the spectra are in 900~1700 nm. Monte Carlo-uninformative variable elimination (MC-UVE) algorithm and successive projections algorithm (SPA) were adopted to the optimization of wavelengths obtained from the region of interest (ROI). Eight wavelengths were selected by MC-UCE-SPA. These feature wavelengths were 924.69, 928.05, 1 112.72, 1 270.91, 1 365.3, 1 402.42, 1 453.06 and 1 547.69 nm, respectively. The spectral reflectance of the 8 feature wavelengths were applied to establish the detective model for the soluble solid content (SSC) of persimmon by partial least squares regression (PLSR) method. The correlation coefficient and root mean square error of prediction set are rpre=0.942, RMSEP=1.009 °Brix. The results indicated that MC-UVE-SPA could effectively extract the characteristic information related to the SSC and develop a better predictive model with fewer wavelengths. This work can provide technical support and research basis for the nondestructive detection, grading and processing equipment for persimmon quality.

Publication Date

10-28-2017

First Page

52

Last Page

55

DOI

10.13652/j.issn.1003-5788.2017.10.011

References

[1] BALTACIOGLU H, ARTIK N. Study of postharvest changes in the chemical composition of persimmon by HPLC[J]. Turkish Journal of Agriculture and Forestry, 2013, 37(5): 568-574.
[2] SAFIYARI H, RAHMANIAN H, SALMANIZADE F, et al. Some physical and mechanical properties of persimmon fruit[J]. Mathematische Nachrichten, 2014, 284(13): 1 701-1 714.
[3] HIRAI S, ROKUHARA S, SHIMIZU S. Changes of invertase activity in Japanese persimmon fruits during maturation, storage and processing[J]. Journal of Japanese Society of Food Science & Technology, 2010, 33(6): 369-374.
[4] SUZUKI T, NIIKAWA T, SAKURAI N. Evaluation of flesh texture and prediction of optimum ripeness in ‘Fuyu’ persimmon after harvest[J]. Horticultural Research, 2011, 10(3): 421-427.
[5] MOHAMMADI V, KHEIRALIPOUR K, GHASEMI-VARNAMKHASTI M. Detecting maturity of persimmon fruit based on image processing technique[J]. Scientia Horticulturae, 2015, 184: 123-128.
[6] ASHTIANI S H M, SALARIKIA A, GOLZARIAN M R, et al. Non-destructive estimation of mechanical and chemical properties of persimmons by ultrasonic spectroscopy[J]. International Journal of Food Properties, 2016, 19(7): 1 522-1 534.
[7] ZHANG Peng, XUE Ying, LI Jiang-kuo, et al. Research on nondestructive measurement of firmness and soluble tannin content of 'mopanshi' persimmon using Vis/NIR diffuse reflection spectroscopy[J]. Acta Horticulturae, 2013, 996: 447-452.
[8] NOYPITAK S, TERDWONGWORAKUL A, KRISANAPOOK K, et al. Evaluation of astringency and tannin content in ‘Xichu’ persimmons using near infrared spectroscopy[J]. International Journal of Food Properties, 2015, 18(5): 1 014-1 028.
[9] 吴方龙, 沈黄通, 吴晨凯, 等. 基于近红外漫反射光谱无损检测梨可溶性固形物的光强影响探究[J]. 光谱学与光谱分析, 2013, 33(10): 2 671-2 674.
[10] 刘燕德, 张光伟. 高光谱成像技术在农产品检测中的应用[J]. 食品与机械, 2012, 28(5): 223-226.
[11] WEI Xuan, LIU Fei, QIU Zheng-jun et al. Ripeness classification of astringent persimmon using hyperspectral imaging technique[J]. Food & Bioprocess Technology, 2014, 7(5): 1 371-1 380.
[12] MUNERA S, BESADA C, ALEIXOS N, et al. Nondestruc-tive assessment of the internal quality of intact persimmon using colour and VIS/NIR hyperspectral imaging[J]. LWT-Food Science and Technology, 2017, 77: 241-248.
[13] CORTES V, RODRIGUEZ A, BLASCO J, et al. Prediction of the level of astringency in persimmon using visible and near-infrared spectroscopy[J]. Journal of Food Engineering, 2017, 204: 27-37.
[14] 思振华, 何建国, 刘贵珊, 等. 基于高光谱图像技术羊肉表面污染无损检测[J]. 食品与机械, 2013, 29(5): 75-79.
[15] ARAUJOM C U, SALDANHAT C B, GALVAO R K H, et al. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis[J]. Chemometrics & Intelligent Laboratory Systems, 2001, 57(2): 65-73.
[16] 郝勇, 孙旭东, 潘圆媛, 等. 蒙特卡罗无信息变量消除方法用于近红外光谱预测果品硬度和表面色泽的研究[J]. 光谱学与光谱分析, 2011, 31(5): 1 225-1 229.
[17] XU Qing-song, LIANG Yi-zeng, DU Yi-Ping. Monte Carlo cross-validation for selecting a model and estimating the prediction error in multivariate calibration[J]. Journal of Chemometrics, 2004, 18(2): 112-120.
[18] FELDICK A, MODEST M F, An improved wavelength selection scheme for Monte Carlo solvers applied to hypersonic plasmas[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2011, 112(8): 1 394-1 401.
[19] 徐爽, 何建国, 易东, 等. 基于高光谱图像技术的长枣糖度无损检测[J]. 食品与机械, 2012, 28(6): 168-170.
[20] 介邓飞, 杨杰, 彭雅欣, 等. 基于高光谱技术的柑橘不同部位糖度预测模型研究[J]. 食品与机械, 2017, 33(3): 51-54.
[21] 赵文英, 花锦, 张梨花, 等. 近红外光谱测定不同鲜肉肉糜中蛋白质含量[J]. 食品与机械, 2017, 33(1): 48-50, 118.
[22] LI Jiang-bo, TIAN Xi, HUANG Wen-qian, et al. Application of long-wave near infrared hyperspectral imaging for measurement of soluble solid content (SSC) in pear[J]. Food Analytical Methods, 2016, 9(11): 1-12.
[23] GUO Wen-chuan, ZHAO Fan, DONG Jin-lei. Nondestructive measurement of soluble solids content of Kiwifruits using near-infrared hyperspectral imaging[J]. Food Analytical Methods, 2016, 9(1): 38-47.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.