Abstract
To investigate the application of minuteness wet pulverization method on the preparation of full bean milk, experimental and numerical analysis were applied in this paper. The influences of different technological parameters on the fiber grain size after the pulverization were also studied, and the empirical formula was obtained by dimensional analysis. The results showed that the average volume size of fiber grain decreased with the increase of cycle number, static blade number and rotating speed. However, the cut depth determined the limitation size of fiber grain. The increase of cycle number would not affect the grain size after the pulverization when the cycle number reached three. The empirical formula could predict the fiber grain size D0 and power dissipation W within the error ≤15%. Meanwhile, the optimal technological parameters to prepare the full bean milk using minuteness wet pulverization method were obtained at last which were n=9 000 rad/min,Zr=216,T=3.
Publication Date
10-28-2017
First Page
158
Last Page
162
DOI
10.13652/j.issn.1003-5788.2017.10.035
Recommended Citation
Xinjun, YANG; Zhengwei, CUI; Yuzhong, ZHANG; and Ning, DAI
(2017)
"Key technology on the preparation of full bean milk by minuteness wet pulverization method,"
Food and Machinery: Vol. 33:
Iss.
10, Article 35.
DOI: 10.13652/j.issn.1003-5788.2017.10.035
Available at:
https://www.ifoodmm.cn/journal/vol33/iss10/35
References
[1] 李琳, 王宸之, 赵赓九, 等. 干法制浆工艺对豆浆品质的影响[J]. 食品与机械, 2017, 33(5): 188-193.
[2] MESSINA M, HILAKIVI C L. Early intake appears to be the key to the proposed protective effects of soy intake against breast cancer[J]. Nutrition and Cancer, 2009, 61(2): 792-798.
[3] BATT H P, THOMAS R L, RAO A. Characterization of isoflavones in membrane-processed soy protein concentrate[J]. Journal of Food Science, 2003, 68(1): 401-404.
[4] 张娟, 闫瑞霞, 孙志洪, 等. 全豆豆浆与传统豆浆感官品质和营养成分对比[J]. 大豆科学, 2017, 36(3): 459-462.
[5] 谢怡斐, 田少君, 马燕, 等. 超微粉碎对豆渣功能性质的影响[J]. 食品与机械, 2014, 30(2): 7-11.
[6] 张娟, 杨栋梁, 周媛, 等. 全豆豆浆的加工工艺研究[J]. 大豆科学, 2016, 35(6): 1 013-1 017.
[7] 霍建冶, 王建光, 吴超义, 等. 低胰蛋白酶抑制剂全豆豆浆的研制[J]. 安徽农业科学, 2015, 43(14): 251-253, 288.
[8] 顾笑笑, 张茂龙, 赵龙, 等. 全谷物冲调粉高效加工技术研究[J]. 食品与机械, 2013, 29(6): 207-210.
[9] 王秀丽, 张茂龙, 高青令, 等. 超细粉碎技术在全枣制浆中的应用研究[J]. 食品科技, 2014, 39(1): 51-55.
[10] 赵龙, 卢慧, 王秀丽, 等. 黑莓浓浆饮品的加工工艺研究[J]. 食品工业科技, 2014, 35(3): 233-240.
[11] 张学建, 王立慧, 赵龙, 等. 超细粉碎技术在现调饮品装置中的应用[J]. 食品与机械, 2013, 29(4): 102-106.
[12] 张茂龙, 陈锡春, 高青令, 等. 高速切割技术及其在鲜湿豆渣超细粉碎中的应用[J]. 食品与机械, 2010, 26(5): 105-108, 154.
[13] 杨满盈, 张裕中. 剪切技术在鲶鱼加工副产物超细制浆中的应用研究[J]. 食品工业科技, 2012, 33(16): 302-305.
[14] 戴宁, 张茂龙, 张裕中. 农产品湿法超细粉碎技术与大豆全利用产品开发[J]. 食品科学, 2011, 32(S1): 91-96.
[15] 张裕中, 臧其梅. 食品加工技术装备[M]. 北京: 中国轻工业出版社, 1999: 118-120.
[16] 王小龙, 张裕中, 张茂龙. 不同湿法粉碎装置的粉碎能耗及豆浆特性的研究[J]. 食品工业科技, 2012, 33(19): 97-100.
[17] SHARMA P, CHAKKARAVARTHI A, SINGH V, et al. Grinding characteristics and batter quality of rice in different wet grinding systems[J]. Journal of Food Engineering, 2008, 88(4): 499-506.
[18] 赵瑞林. 浅谈搅拌设备功率计算公式对推进式搅拌器的适用范围[J]. 铀矿冶, 2000, 19(3): 184-149.
[19] 沈培玉, 赵浩, 张裕中. 农产品物料高速切割粉碎流场数值模拟与试验[J]. 农业机械学报, 2010(9): 60-65.