Abstract
Kelp liquefaction rate as technical index, by biological enzymolysis technology, the enzymatic hydrolysis conditions were optimized, such as granularity, substrate concentration, reaction temperature, reaction time and pH, and the monosaccharide composition and oligosaccharide polymerization degree of kelp enzymatic hydrolysate were also analyzed separately by the high performance liquid chromatography (HPLC) and high performance gel permeation chromatography (HPGPC). The result suggested that the optimum conditions of rapid liquefaction of kelp were as followed: the size of raw material 100 mesh, the ratio of material to liquid 1︰12 (g/mL), pH 8, reaction temperature 50, and reaction time 12 h. Under this condition, the liquefaction rate of kelp could reach to 71%. Analysis results of monosaccharide composition and oligosaccharide polymerization degree of kelp enzyme solution: the contents of non saccharide impurities, oligosaccharides and monosaccharides were 54.8%, 18.9%, 27.2%, respectively, in the dry matter of kelp enzymolysis liquid; the content of oligosaccharide above 6 sugar were larger than 3~6 suger; the content of uronic acid was the highest in monosaccharide. In this paper, the kelp enzyme solution has the advantages of simple process, convenient operation, high enzymolysis efficiency, and small molecular substances degraded from large molecules are more conducive absorption to animal and plant. The method expand the application field of kelp enzyme solution.
Publication Date
10-28-2017
First Page
169
Last Page
173
DOI
10.13652/j.issn.1003-5788.2017.10.037
Recommended Citation
Lirong, CHANG; Xiangzhong, ZHAO; Yanyan, YAO; and Xiaohui, WANG
(2017)
"Optimization of rapid liquefaction process of kelp and its products analysis,"
Food and Machinery: Vol. 33:
Iss.
10, Article 37.
DOI: 10.13652/j.issn.1003-5788.2017.10.037
Available at:
https://www.ifoodmm.cn/journal/vol33/iss10/37
References
[1] 岳昊, 孙英泽, 胡婧, 等. 中国海带产业及国际贸易情况分析[J]. 农业展望, 2013, 9(9): 65-69.
[2] 宋武林. 海带的主要功能及加工利用研究现状[J]. 渔业研究, 2016, 38(1): 81-86.
[3] KIM Ki-Hoon, KIM Yea-Woom, KIM Han Bok, et al. Anti-apoptotic activity of laminarin polysaccharides and their enzymatically hydrolyzed oligosaccharides from Laminaria japonica[J]. Biotechnology Letters, 2006, 28(6): 439-446.
[4] 刘远平, 韩硕, 李钰金. 岩藻聚糖硫酸酯的生物活性研究进展[J]. 安徽农业科学, 2013(2): 42-44.
[5] 孙抗, 林江, 张婷, 等. 海藻多糖抗肿瘤机制研究综述[J]. 广西中医学院学报, 2012, 15(2): 103-105.
[6] 田鑫, 李秀霞, 吴科阳, 等. 海藻多糖提取纯化及生物活性的研究进展[J]. 食品与发酵科技, 2015, 51(6): 81-85.
[7] CHANG Hu-xue, YU Fang, HONG Lin, et al. Chemical characters and antioxidative properties of sulfated polysaccharides from Laminaria japonica[J]. Journal of Applied Phycology, 2001, 13(1): 67-70.
[8] 谢瑾, 林宗毅, 王智荣, 等. 海带多糖酶法降解及其产物生物活性的研究[J]. 食品研究与开发, 2016, 37(20): 23-27.
[9] 董雪敏, 丛培云. 海带岩藻聚糖硫酸酯的饮料开发[J]. 食品研究与开发, 2015, 36(3): 39-43.
[10] UENO M, TAMURA Y, TODA N, et al. Sodium alginate oligosaccharides attenuate hypertension in apontaneously hypertensive rats fed a low-salt diet[J]. Clinical and Experimental Hypertension, 2012, 34(5): 305-310.
[11] 张璐妮, 邵玉, 张玉影, 等. 海带多糖防辐射作用的研究进展[J]. 吉林医药学院学报, 2015, 36(5): 375-377.
[12] 李斌, 永沛, 刘翼翔, 等. 海带渣中岩藻黄素的酶法提取工艺研究[J]. 食品工业科技, 2014(21): 192-196.
[13] 刘萌, 刘光明, 刘翼翔, 等. 生物酶法制备海带多酚的工艺研究[J]. 集美大学学报, 2017(1): 21-28.
[14] 张换, 曾艳, 管于平, 等. 响应面法优化海带多糖的酶法提取工艺及其抗氧化研究[J]. 食品科技, 2013, 38(5): 197-202.
[15] 王亚. 海洋弧菌QY105中褐藻胶裂解酶的研究[D]. 青岛: 中国海洋大学, 2013: 10-16.
[16] 汤海青, 欧昌荣, 郑晓东. 1株产褐藻胶裂解酶海洋细菌的分离鉴定及其酶学性质[J]. 浙江大学学报, 2013, 39(4): 387-395.
[17] 王雪莹. 一种海洋硫酸多糖降解酶降解岩藻聚糖硫酸酯和糖胺聚糖的研究[D]. 青岛: 中国海洋大学, 2014: 17-32.
[18] 柏超. 海带降解复合菌的选育及其功能研究[D]. 杭州: 浙江大学, 2012: 14-25.
[19] ARIYO B T. Alginate oligosaccharides as enhancers of penicillin production in cultures of penicilliurn chrysogenum[J]. Biotechnology & Bioengineering, 1997, 53(1): 17-20.
[20] HONDA S, AKAO E, SUZUKI S, et al. High-performance liquid chromatography of reducing carbohydrates as strongly ultraviolet-absorbing and electrochemically sensitive 1-phenyl-3-methyl-5-pyrazolone derivatives[J]. Analytical Biochemistry, 1989, 180(2): 351-357.
[21] 付海宁, 赵峡, 于广利, 等. 盐藻多糖单糖组成分析的几种色谱方法比较[J]. 中国海洋药物, 2008, 27(4): 30-34.
[22] 仇哲. 海带酶解产物及对海参生长的影响[D]. 大庆: 黑龙江八一农垦大学, 2015: 9-15.
[23] 徐扬, 杨保伟, 柴博华, 等. 超声波-酶法提取海带多糖及其抑菌活性[J]. 农业工程学报, 2010, 26(增刊1): 356-361.
[24] 刘志新, 刘金富, 徐凤, 等. 超声波复合酶法提取海带多糖的工艺优化[J]. 安徽农业科学, 2013, 41(20): 8 467-8 469.
[25] 董学前, 张艳敏, 张永刚, 等. 复合酶法综合提取海带中褐藻糖胶与海藻酸的研究[J]. 中国食品添加剂, 2017(9): 171-176.
[26] LIU Yan, JIANG Xiao-lu, LIAO Wei, et al. Analysis of oligoguluronic acids with NMR, electrospray ionization-mass spectrometry and high-performance anion-exchange chromatography[J]. Journal of Chromatography A, 2002, 968(1/2): 71-78.