•  
  •  
 

Abstract

Terpenoid is the major type of citrus fruit volatiles. The paper reviewed the progress of researches on terpenoid volatiles in citrus fruits including the profiles and biosynthetic pathway of terpenoid volatiles, the effect of preharvest and postharvest factors on the terpenoid volatiles of citrus fruits. In this paper, the future research topic of the relevant area was also proposed, which would be beneficial for the research community.

Publication Date

10-28-2017

First Page

200

Last Page

204

DOI

10.13652/j.issn.1003-5788.2017.10.043

References

[1] XU Qiang, CHEN Ling-ling, RUAN Xiao-an, et al. The draft genome of sweet orange (Citrus sinensis)[J]. Nat Genetics, 2013, 45(1): 59-66.
[2] 王文军, 曾凯芳, 刘晓佳, 等. 不同保鲜剂对柑橘果实贮藏品质的影响[J]. 食品与机械, 2017, 33(4): 110-116.
[3] ZHANG Hai-peng, XIE Yun-xia, LIU Cui-hua, et al. Comprehen-sive comparative analysis of volatile compounds in citrus fruits of different species[J]. Food Chemistry, 2017, 230: 316-326.
[4] MOSES T, POLLIER J, THEVELEIN J M, et al. Bioengineering of plant (tri)terpenoids: from metabolic engineering of plants to synthetic biology in vivo and in vitro[J]. New Phytologist, 2013, 200(1): 27-43.
[5] DUDAREVA N, KLEMPIEN A, MUHLEMANN J K, et al. Biosynthesis, function and metabolic engineering of plant volatile organic compounds[J]. New Phytologist, 2013, 198(1): 16-32.
[6] MUNEMASA S, HAUSER F, PARK J, et al. Mechanisms of abscisic acid-mediated control of stomatal aperture[J]. Current Opinion in Plant Biology, 2015, 28: 154-162.
[7] WASTERNACK C, HAUSE B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development[J]. Annals of Botany, 2013, 111(6): 1 021-1 058.
[8] LUMBA S, HOLBROOK-SMITH D, MCCOURT P. The perception of strigolactones in vascular plants[J]. Nature Chemical Biology, 2017, 13(6): 599-606.
[9] NJOROGE S M, KOAZE H, KARANJA P N, et al. Volatile constituents of redblush grapefruit (Citrus paradisi) and pummelo (Citrus grandis) peel essential oils from Kenya[J]. Journal of Agricutural and Food Chemistry, 2005, 53(25): 9 790-9 794.
[10] 李松, 吴光斌, 陈发河. 超临界萃取琯溪蜜柚精油工艺优化及组分分析[J]. 食品与机械, 2013, 29(1): 113-117.
[11] REN Jing-nan, TAI Ya-nan, DONG Man, et al. Characterisation of free and bound volatile compounds from six different varieties of citrus fruits[J]. Food Chemistry, 2015, 185: 25-32.
[12] 秦轶, 侯小桢, 章斌, 等. 柠檬精油的化学成分分析及其抗氧化活性研究[J]. 食品与机械, 2014, 30(3): 169-173.
[13] XIE Jiao, DENG Li-li, ZHOU Ya-han, et al. Analysis of changes in volatile constituents and expression of genes involved in terpenoid metabolism in oleocellosis peel[J]. Food Chemistry, 2017, 243: 269-276.
[14] LIU Cui-hua, CHENG Yun-jiang, ZHANG Hong-yan, et al. Volatile constituents of wild citrus Mangshanyegan (Citrus nobilis Lauriro) peel oil[J]. Journal of Agricultural and Food Chemistry, 2012, 60(10): 2 617-2 628.
[15] 付复华, 李忠海, 单杨, 等. GC-MS法分析三种柑橘皮精油成分[J]. 食品与机械, 2010, 26(3): 30-34.
[16] 吴厚玖, 焦必林, 孙志高, 等. 安岳柠檬果实和香精油的理化性状评价[J]. 中国南方果树, 1998(6): 16-17.
[17] 张涵, 鲁周民, 王锦涛, 等. 4种主要柑橘类香气成分比较[J]. 食品科学, 2017(4): 192-196.
[18] 陈婷, 王日葵, 陆智明. 柑橘果实采后风味劣变机理的研究进展[J]. 农产品加工: 学刊, 2010(2): 56-59.
[19] ZHENG Hui-wen, ZHANG Qiu-yun, QUAN Jun-ping, et al. Determination of sugars, organic acids, aroma components, and carotenoids in grapefruit pulps[J]. Food Chemistry, 2016, 205: 112-121.
[20] NAGEGOWDA D A. Plant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and subcellular compartmentation[J]. FEBS Letters, 2010, 584(14): 2 965-2 973.
[21] PULIDO P, PERELLO C, RODRIGUEZ-CONCEPCION M. New insights into plant isoprenoid metabolism[J]. Molecular Plant, 2012, 5(5): 964-967.
[22] MOTOYAMA K, UNNO H, HATTORI A, et al. A single amino acid mutation converts (R)-5-diphosphomevalonate decarboxylase into a kinase[J]. Journal of Biological Chemistry, 2017, 292(6): 2 457-2 469.
[23] PANKRATOV I, MCQUINN R, SCHWARTZ J, et al. Fruit carotenoid-deficient mutants in tomato reveal a function of the plastidial isopentenyl diphosphate isomerase (IDI1) in carotenoid biosynthesis[J]. Plant Journal, 2016, 88(1): 82-94.
[24] ZHANG Yan, LI Zhi-xia, YU Xiu-dao, et al. Molecular characterization of two isoforms of a farnesyl pyrophosphate synthase gene in wheat and their roles in sesquiterpene synthesis and inducible defence against aphid infestation[J]. New Phytologist, 2015, 206(3): 1 101-1 115.
[25] THAPA H R, NAIK M T, OKADA S, et al. A squalene synthase-like enzyme initiates production of tetraterpenoid hydrocarbons in Botryococcus braunii Race L[J]. Nature Communications, 2016, 7: 11 198.
[26] WU G A, PROCHNIK S, JENKINS J, et al. Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication[J]. Nature Biotechnology, 2014, 32(7): 656-662.
[27] DING Yu-duan, CHANG Ji-wei, MA Qiao-li, et al. Network analysis of postharvest senescence process in citrus fruits revealed by transcriptomic and metabolomic profiling[J]. Plant Physiology, 2015, 168(1): 357-376.
[28] GOLDENBERG L, YANIV Y, DORON-FAIGENBOIM A, et al. Diversity among mandarin varieties and natural sub-groups in aroma volatiles compositions[J]. Journal of Science and Food Agriculture, 2016, 96(1): 57-65.
[29] CHEONG Mun-wai, LIU Shao-quan, ZHOU Wei-biao, et al. Chemical composition and sensory profile of pomelo (Citrus grandis 〔L.〕 Osbeck) juice[J]. Food Chemistry, 2012, 135(4): 2 505-2 513.
[30] ZHANG Ming-xia, LI Lin-bo, WU Zhong-wei, et al. Volatile composition in two pummelo cultivars (Citrus grandis L. Osbeck) from different cultivation regions in China[J]. Molecules, 2017, 22(5): E716.
[31] XU Ya-ying, WU Bo-ping, CAO Xiang-mei, et al. Citrus CmTPS1 is associated with formation of sesquiterpene bicyclogermacrene[J]. Scientia Horticulturae, 2017, 226: 133-140.
[32] ALQUEZAR B, RODRIGUEZ A, PENA M, et al. Genomic analysis of terpene synthase family and functional characterization of seven sesquiterpene synthases from Citrus sinensis[J]. Frontiers in Plant Science, 2017, 8: 1 481.
[33] LI Xiang, XU Ya-ying, SHEN Shu-ling, et al. Transcription factor CitERF71 activates the terpene synthase gene CitTPS16 involved in the synthesis of E-geraniol in sweet orange fruit[J]. Journal of Experimental Botany, 2017, 68(17): 4 929-4 938.
[34] YU Yuan, BAI Jin-he, CHEN Chun-xia, et al. Identification of QTLs controlling aroma volatiles using a 'Fortune' x 'Murcott' (Citrus reticulata) population[J]. BMC Genomics, 2017, 18(1): 646.
[35] TIEMAN D, ZHU Guang-tao, RESENDE M J, et al. A chemical genetic roadmap to improved tomato flavor[J]. Science, 2017, 355(6 323): 391-394.
[36] 唐会周, 曾凯芳, 明建, 等. 锦橙果实发育进程香气成分及品质特性分析[J]. 食品科学, 2012(8): 260-264.
[37] 陈杉艳. 脐橙果实成熟过程中主要香气物质含量的变化及其关键基因的表达[D]. 武汉: 华中农业大学, 2011: 23-36.
[38] GAO Jie, WU Bo-ping, GAO Liu-xiao, et al. Glycosidically bound volatiles as affected by ripening stages of Satsuma mandarin fruit[J]. Food Chemistry, 2018, 240: 1 097-1 105.
[39] OBENLAND D, COLLIN S, MACKEY B, et al. Storage temperature and time influences sensory quality of mandarins by altering soluble solids, acidity and aroma volatile composition[J]. Postharvest Biology and Technology, 2011, 59(2): 187-193.
[40] BALDWIN E A, NISPEROS-CARRIEDO M, SHAW P E, et al. Effect of coatings and prolonged storage conditions on fresh orange flavor volatiles, degrees brix, and ascorbic acid levels[J]. Journal of Agricultural and Food Chemistry, 1995: 43(5): 1 321-1 331.
[41] TIETEL Z, LEWINSOHN E, FALLIK E, et al. Importance of storage temperatures in maintaining flavor and quality of mandarins[J]. Postharvest Biology and Technology, 2012, 64(1): 175-182.
[42] OBENLAND D, COLLIN S, SIEVERT J, et al. Mandarin flavor and aroma volatile composition are strongly influenced by holding temperature[J]. Postharvest Biology and Technology, 2013, 82: 6-14.
[43] GOLDENBERG L, YANIV Y, CHOI H J, et al. Elucidating the biochemical factors governing off-flavor perception in mandarins[J]. Postharvest Biology and Technology, 2016, 120: 167-179.
[44] TIETEL Z, BAR E, LEWINSOHN E, et al. Effects of wax coatings and postharvest storage on sensory quality and aroma volatile composition of 'Mor' mandarins[J]. Journal of Science and Food Agriculture, 2010, 90(6): 995-1 007.
[45] LI Yong-xin, GOLDING J B, ARCOT J, et al. Continuous exposure to ethylene in the storage environment adversely affects ‘Afourer’ mandarin fruit quality[J]. Food Chemistry, 2018, 242: 585-590.
[46] SDIRI S, RAMBLA J L, BESADA C, et al. Changes in the volatile profile of citrus fruit submitted to postharvest degreening treatment[J]. Postharvest Biology and Technology, 2017, 133: 48-56.
[47] MAYUONI L, TIETEL Z, PATIL B S, et al. Does ethylene degreening affect internal quality of citrus fruit?[J]. Postharvest Biology and Technology, 2011, 62(1): 50-58.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.