Abstract
In order to realize the detection of mango size, maturity and degree of decay, a test platform based on DSP6437 development board was constructed. Image acquisition was carried out on this platform, with conversion and collection of the data stream. Therefor, the RGB and grayscale images were obtained, the super neighborhood average method for smoothing the image was used to detect the region of interest, and according to the regional average gray degree of maturity, the classification of mango was determined. The edge points of mango were calculated by Laplace transform, and the minimum envelope rectangle was rotated to judge the size. Combining the visual inspection with gray histogram statistics and the taste sensor, the ripeness of mango was determined. The experimental results showed that the detection platform was small, stable, accurate and more suitable for actual production detection, and was also practicable for the inspection of mango production.
Publication Date
11-28-2017
First Page
127
Last Page
130,136
DOI
10.13652/j.issn.1003-5788.2017.11.027
Recommended Citation
Junyang, PAN; Huiyu, XIANG; and Zhen, XUE
(2017)
"Construction of mango quality inspection platform based on DSP system,"
Food and Machinery: Vol. 33:
Iss.
11, Article 27.
DOI: 10.13652/j.issn.1003-5788.2017.11.027
Available at:
https://www.ifoodmm.cn/journal/vol33/iss11/27
References
[1] 刘静, 黄勇平, 章程辉. 视觉系统开发模块在芒果果面缺陷检测中的应用[J]. 食品与机械, 2009, 25(2): 82-85.
[2] 李甦, 谭永龙, 杨美英. 芒果分级与表面缺陷检测研究[J]. 计算机工程与设计, 2008(15): 3 954-3 957.
[3] 康志亮, 陈韵羽, 王思, 等. 便携式受损芒果检测装置的设计[J]. 农机化研究, 2010(12): 52-56.
[4] 赵杰文, 刘剑华, 陈全胜, 等. 利用高光谱图像技术检测水果轻微损伤[J]. 农业机械学报, 2008(1): 106-109.
[5] 党宏社, 宋晋国, 郭琴. 基于ARM的嵌入式芒果大小检测与分级系统的实现[J]. 四川农业大学学报, 2011(1): 89-93.
[6] 朱明, 陆小锋, 陆亨立, 等. AdaBoost人脸检测算法在DSP上的移植与优化[J]. 计算机工程与应用, 2014(20): 197-201, 232.
[7] 吕颖. DSP图像数据的可视化[J]. 福建电脑, 2011(3): 153-155.
[8] 肖剑雄峰. 局部对比度增强的彩色图像灰度化参数化算法研究[D]. 温州: 温州大学, 2016: 9-16.
[9] 姜小磊, 姚鸿勋, 赵思成. 一种极值约束的边缘保持图像平滑算法[J]. 计算机科学, 2014(10): 101-105, 127.
[10] 张琪. 结合边缘检测的图像二值化算法[D]. 长春: 吉林大学, 2011: 24-30.
[11] 张建光, 李永霞. 基于拉普拉斯边缘检测算子的图像分割[J]. 福建电脑, 2011(7): 99, 101.
[12] 周林妹. 数字图像边缘检测算法及其在农产品加工中的应用[J]. 食品与机械, 2009, 25(3): 139-142, 153.
[13] 赵源萌, 王岭雪, 金伟其, 等. 基于区域直方图统计的灰度图像色彩传递方法[J]. 北京理工大学学报, 2012(3): 322-326.
[14] 范晔. 基于DM6437的车牌识别系统的设计与实现[D]. 西安: 西安电子科技大学, 2012: 61-62.
[15] 杨方. 基于TMS320C6678的多核DSP并行处理应用技术研究[D]. 北京: 北京理工大学, 2014: 47-50.
[16] 刘德方, 邓明, 陈海燕, 等. 基于DM6437和VLIB的Canny边缘检测[J]. 安徽建筑工业学院学报: 自然科学版, 2013(2): 72-75.
[17] 黄震, 刘亚斌. TMS320C6000系列DSP程序固化的研究[J]. 电子设计工程, 2016(12): 26-28, 32.