Abstract
The physicochemical characteristics and digestibility of native starch from Dioscorea opposite Thunb. cv. Huaiqing and its resistant starch produced by autoclave process preparation method have been analyzed and compared in the paper. Results showed that the shape of native starch granules from Dioscorea opposite Thunb. cv. Huaiqing was irregular ellipsoid and triangle with a smooth surface. The crystal form of naitive starch was type C. Resistant starch losing particle characteristic exhibited a lamellar structure with loose surface. Both of them were similar in chemical structure without new functional group in resistant starch granules. Compared with the native starch, the molecular weight distribution of resistant starch was more concentrated. The peak temperature of resistant starch gelatinization was higher than that of naitive starch, and the resistant starch had better thermal stability. The transparency of resistant starch was lower than naitive starch. When bath temperature was lower than 75 ℃, the water-holding capacity of resistant starch was greater than that of naitive starch, and while bath temperature was above the gelatinization temperature of native starch, water-holding capacity of naitive starch, which was much higher than that of resistant starch. The results of simulating human digestion based on In-Vitro mode showed that resistant starch was more resistant to digestion than naitive starch.
Publication Date
11-28-2017
First Page
41
Last Page
46
DOI
10.13652/j.issn.1003-5788.2017.11.008
Recommended Citation
Liping, MA; Kunpeng, JIAO; Lei, LUO; Jinle, XIANG; Xiaoyu, ZHANG; Jinling, FAN; and Wenxue, ZHU
(2017)
"Study on physicochemical properties and digestibility of the resistant starch from Dioscorea opposite Thunb. cv. Huaiqing,"
Food and Machinery: Vol. 33:
Iss.
11, Article 8.
DOI: 10.13652/j.issn.1003-5788.2017.11.008
Available at:
https://www.ifoodmm.cn/journal/vol33/iss11/8
References
[1] 陆海波, 赵华, 田梁, 等. 怀山药黄酒酿造工艺[J]. 食品与发酵工业, 2016, 42(1): 76-80.
[2] 周玥, 郭华, 周洁. 铁棍怀山药中主要营养成分的研究[J]. 中国食物与营养, 2011, 17(3): 69-71.
[3] SNCHEZ-ZAPATA E, VIUDA-MARTOS M, FERNNDEZ-LPEZ J, et al. Resistant starch as functional ingredient[J]. Polysaccharides: Bioactivity and Biotechnology, 2015, Doi:10.1007/978-3-319-16298-034.
[4] CHEN Bi-xiao, MORIOKA S, NAKAGAWA T, et al. Resi-stant starch reduces colonic and urinary p-cresol in rats fed a tyrosine-supplemented diet, whereas konjac mannan does not[J]. Bioscience, Biotechnology, and Biochemistry, 2016, 80(10): 1 995-2 000.
[5] ZHANG Yi, ZENG Hong-liang, WANG Ying, et al. Structural characteristics and crystalline properties of lotus seed resistant starch and its prebiotic effects[J]. Food Chemistry, 2014, 155: 311-318.
[6] JIMINEZ J A, UWIERA T C, ABBOTT D W, et al. Impacts of resistant starch and wheat bran consumption on enteric inflammation in relation to colonic bacterial community structures and short-chain fatty acid concentrations in mice[J]. Gut Pathogens, 2016, 8(1): 67.
[7] 王蕾蕾, 何芳, 樊慧茹, 等. 高抗性淀粉大米血糖生成指数测定及对糖尿病患者血糖调控的干预研究[J]. 营养学报, 2017, 39(2): 197-199.
[8] KLOSTERBUER A S, THOMAS W, SLAVIN J L. Resistant starch and pullulan reduce postprandial glucose, insulin, and GLP-1, but have no effect on satiety in healthy humans[J]. Journal of Agricultural and Food Chemistry, 2012, 60(48): 11 928-11 934.
[9] NICHENAMETLA S N, WEIDAUER L A, WEY H E, et al. Resistant starch type 4-enriched diet lowered blood cholesterols and improved body composition in a double blind controlled cross-over intervention[J]. Molecular Nutrition & Food Research, 2014, 58(6): 1 365-1 369.
[10] 黄志强, 唐健, 白永亮, 等. 抗性淀粉及其防治肥胖症的研究进展[J]. 食品与机械, 2012, 28(4): 250-253.
[11] FUENTES-ZARAGOZA E, RIQUELME-NAVARRETE M J, SANCHEZ-ZAPATA E, et al. Resistant starch as functional ingredient: A review[J]. Food Research International, 2010, 43(4): 931-942.
[12] SCHOLZ-AHRENS K E, ADE P, MARTEN B, et al. Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure[J]. Journal of Nutrition, 2007, 137(3): 838-846.
[13] 朱平, 孔祥礼, 包劲松. 抗性淀粉在食品中的应用及功效研究进展[J]. 核农学报, 2015, 29(2): 327-336.
[14] 李昌文, 刘延奇, 李延涛. 怀山药淀粉性质研究[J]. 中国粮油学报, 2010, 25(8): 23-26.
[15] 王丽霞, 王敬臻, 张金玲, 等. 长山山药淀粉的制备及性能[J]. 食品科学, 2017(9): 156-161.
[16] 宋洪波, 张丽芳, 安凤平, 等. 压热法制备淮山药抗性淀粉及其消化性[J]. 中国食品学报, 2014, 14(7): 59-65.
[17] 任广跃, 刘亚男, 乔小全, 等. 基于变异系数权重法对怀山药干燥全粉品质的评价[J]. 食品科学, 2017, 38(1): 53-59.
[18] 张社利, 许文静, 张会菊, 等. 高效液相色谱法测定怀山药中的薯蓣皂苷元[J]. 理化检验: 化学分册, 2013, 49(1): 33-34, 38.
[19] ZHANG Li-jing, WANG Mao-shan. Optimization of deep eutectic solvent-based ultrasound-assisted extraction of polysaccharides from Dioscorea opposita Thunb[J]. International Journal of Biological Macromolecules, 2017, 95: 675-681.
[20] 赵喜亭, 宋志辉, 赵月丽, 等. 怀山药种栽质量分级标准研究[J]. 河南师范大学学报: 自然科学版, 2017, 45(3): 118-124.
[21] 李海兵, 周娜, 赵姣, 等. 怀山药种质资源的包埋玻璃化超低温保存与植株再生[J]. 植物学报, 2010, 45(3): 379-383.
[22] 刘树兴, 杨麒, 赵广蒙. 直链淀粉含量对小麦RS3型抗性淀粉得率的影响[J]. 食品科技, 2016(12): 226-231.
[23] 史苗苗, 高群玉. 抗性淀粉直链淀粉含量测定及消化性研究[J]. 食品工业科技, 2011(5): 105-107, 112.
[24] 曾红华. 抗性淀粉的理化性质及其益生效应[D]. 长沙: 长沙理工大学, 2013: 20.
[25] 李光磊, 李新华. 抗性淀粉应用特性研究[J]. 中国粮油学报, 2007, 22(6): 78-81.
[26] COOKE D, GIDLEY M J. Loss of crystalline and molecular order during starch gelatinization: origin of the enthalpic transition[J]. Carbohydrate Research, 1992, 227: 103-112.
[27] 赵力超, 于荣, 刘欣, 等. 大米抗性淀粉制备工艺优化及特性分析[J]. 农业工程学报, 2013, 29(12): 277-285.
[28] KWEON M R, SHIN M S. Comparison of enzyme resistant starches forming during heat-moisture treatment and retrogradation of high amylose corn starches[J]. Agricultural Chemistry and Biotechnology, 1997, 40(6): 508-513.
[29] 张丽芳, 宋洪波, 安凤平, 等. 淮山药淀粉及其抗性淀粉理化性质的比较[J]. 中国粮油学报, 2014, 29(3): 24-29.
[30] 杜双奎, 王华, 聂丽洁. 芸豆淀粉理化特性研究[J]. 中国粮油学报, 2012, 27(8): 31-35.