Abstract
To evaluate the pollution of heavy metal in east Dongting Lake and analyze the differences of enrichment of heavy metal between silver carp and aristichthys nobilis, this experiment determined the concentration of five different heavy metals, including Cr, Cu, Cd, Pb and Hg, in sediment and tissues of silver carp and Aristichthys nobilis. Results show that the concentration of Cr in sediment belongs to the first state level in soil standard, the concentrations of Cu, Pb and Hg belong to the second state level in soil standard, the concentration of Cd is 2 times of the third state level in soil standard; The sequence of tissues of silver carp and aristichthys nobilis arrayed by the concentration of heavy metal is consistent, the sequece arrayed by the concentration of Cr is gill > liver > brain > meat, Cu is liver > brain > gill > meat, Cd is liver > gill > brain > meat, Pb is gill > liver > meat > brain, Hg is meat > liver > brain > gill; According to the BSFAs of fish, compare to Cr and Pb, silver carp and Aristichthys nobilis are more likely to enrich Cu, Cd and Hg, and silver carp is easier to enrich Cd, while Aristichthys nobilis enrichs Hg easier; Except the concentration of Cd in the liver of silver carp and aristichthys nobilis beyond the industry standard limited, the others are all below the limited. In conclusion, the pollution of Cd in east Dongting Lake is the most serious; Differences of enrichment of heavy metals in different fishs do exist, while the sequence of tissues of different fishs arrayed by the concentration of heavy metal is consistent due to the same physiological function; Compare to gill and liver, meat and brain have weaker affinity for heavy metals.
Publication Date
12-28-2017
First Page
65
Last Page
69
DOI
10.13652/j.issn.1003-5788.2017.12.013
Recommended Citation
Xiaowei, LIU; Weiya, LU; Minmin, XUE; and Zhonghai, LI
(2017)
"Analysis of the differences of heavy metal enrichment between silver carp and aristichthys nobilis in east dongting lake,"
Food and Machinery: Vol. 33:
Iss.
12, Article 13.
DOI: 10.13652/j.issn.1003-5788.2017.12.013
Available at:
https://www.ifoodmm.cn/journal/vol33/iss12/13
References
[1] 万群, 李飞, 祝慧娜, 等. 东洞庭湖沉积物中重金属的分布特征、污染评价与来源辨析[J]. 环境科学研究, 2011, 24(12): 1 378-1 384.
[2] 祝云龙, 姜加虎, 黄群, 等. 东洞庭湖与大通湖水体沉积物和生物体中Cd Pb Hg As的含量分布及相互关系[J]. 农业环境科学学报, 2008, 27(4): 1 377-1 384.
[3] 王华, 马宁, 杨晓静, 等. 成都市雨水中的重金属特征[J]. 地球与环境, 2010, 38(1): 49-53.
[4] 徐思敏, 王建辉, 刘永乐, 等. 洞庭湖区淡水鱼中有毒有害物残留研究现状[J]. 食品与机械, 2016, 32(5): 220-224.
[5] 刘芳芳, 李忠海, 付湘晋, 等. 东洞庭湖网箱养殖鲤鱼生长期内重金属的富集特征[J]. 环境科学研究, 2013, 26(2): 166-172.
[6] 杨晨驰, 黄亮亮, 李建华, 等. 东苕溪下游鲫鱼不同组织重金属含量分析及食用安全性评价[J]. 食品科学, 2013, 34(19): 317-320.
[7] 曾龄颐, 李文丽, 黎瑛, 等. 湘江流域长沙段鱼类重金属污染情况分析与评价[J]. 轻工科技, 2012(9): 94-95.
[8] BURCU Ba瘙塂yigit, SELDA Tekin-zan. Concentrations of some heavy metals in water, sediment, and tissues of pikeperch (Sander lucioperca) from Karata瘙塂 lake related to physico-chemical parameters, fish size, and seasons[J]. Pol. J. Environ. Stud, 2013, 22(3): 633-644.
[9] 国家质量监督检验检疫总局. SN/T 2208—2008 水产品中钠、镁、铝、钙、铬、铁、镍、铜、锌、砷、锶、钼、镉、铅、汞、硒的测定 微波消解-电感耦合等离子体-质谱法[S]. 北京: 中国标准出版社, 2008: 1-3.
[10] 国家环境保护总局. GB/T 17141—1997 土壤质量铅、镐的测定石墨炉原子吸收分光光度法[S]. 北京: 中国标准出版社, 1997: 1-4.
[11] 姚志刚, 鲍征宇, 高璞. 洞庭湖沉积物重金属环境地球化学[J]. 地球化学, 2006, 35(6): 629-638.
[12] SABULLAH M K, AHMAD S A, SHUKOR M Y, et al. Heavy metal biomarker: Fish behavior, cellular alteration, enzymatic reaction and proteomics approaches[J]. International Food Research Journal, 2015, 22(2): 435-454.
[13] 刘恩生, 刘正文, 鲍传和, 等. 太湖鲚鱼和鲢、鳙鱼的食物组成及相互影响分析[J]. 湖泊科学, 2007, 19(4): 451-456.
[14] 田林锋, 胡继伟, 罗桂林, 等. 贵州百花湖鱼体器官及肌肉组织中重金属的分布特征及其与水体重金属污染水平的相关性[J]. 水产学报, 2012, 36(5): 714-722.
[15] 路浩, 刘宗平, 赵宝玉. 金属硫蛋白生物学功能研究进展[J]. 动物医学进展, 2009, 30(1): 62-65.
[16] 方展强, 杨丽华. 重金属在鲫幼鱼组织中的积累与分布[J]. 水利渔业, 2004, 24(6): 23-26.
[17] MASOUD M S, EI-SAMRA M I, EI-SADAWY M M. Heavy-metal distribution and risk assessment of sediment and fish from El-Mex Bay, Alexandria, Egypt[J]. Chemistry and Ecology, 2007, 23(3): 201-216.
[18] FARKAS A,SALANKI J, VARANKA I. Heavy metal concentrations in fish of Lake Balaton[J]. Lakes & Reservoirs: Research and Management, 2000, 5: 271-279.
[19] HAS-SCHON E, BOGUT I, RAJKOVIC V, et al. Heavy Metal distribution in tissues of six fish species included in human diet, inhabiting freshwaters of the nature park ”hutovo blato” (bosnia and herzegovina)[J]. Arch Environ Contam Toxicol, 2008, 54: 75-83.
[20] NAKAYAMA S M M,IKENAKA Y, MUZANDU K, et al. Heavy metal accumulation in lake sediments, fish (oreochromis niloticus and serranochromis thumbergi), and crayfish (cherax quadricarinatus) in lake itezhi-tezhi and lake kariba, zambia[J]. Arch Environ Contam Toxicol, 2010, 59: 291-300.
[21] 孔祥会, 刘占才, 郭彦玲, 等. 汞暴露对草鱼器官组织中碱性磷酸酶活性的影响[J]. 中国水产科学, 2007, 14(2): 270-274.
[22] 陆维亚, 李节, 薛敏敏, 等. 重金属在浮游生物与鳙鱼中的蓄积和迁移规律[J]. 食品与机械, 2016, 32(3): 96-100.
[23] 周启星. 生态毒理学[M]. 北京: 科学出版社, 2004: 298-392.
[24] BENJAKUL S, VISESSANGUAN W, THONGKAEW C, et al. Comparative study on physicochemical changes of muscle protein from some tropical fish during frozen storage[J]. Food Research International, 2003, 36(8): 787-795.