Preparation of Nanocrystalline Cellulose from Food By-products and its Applications in Food Industry
Abstract
Nano cellulose material, as an environment-friendly material, has attracted much attention for applications in fields of material sciences, food, chemical engineering, and medicine due to its biocompatibility and biodegradability. Nanocrystalline cellulose (NCC) show a high aspect ratio, large surface-to-volume ratio, high crystallinity index, high tensile strength, and good thermal stability. Having reviewed the scientific literature on NCC during the last 5 years, aimed to provide an overview about morphology, crystallization, and stability properties of NCC as well as its major applications (as reinforcing agents for food packaging, as emulsion stabilizers and food ingredients). However, its future development and commercialization still necessitate the overcoming of numerous challenges.
Publication Date
2-28-2017
First Page
1
Last Page
5,38
DOI
10.13652/j.issn.1003-5788.2017.02.001
Recommended Citation
Yang, WANG; Guohua, ZHAO; Li, XIAO; and Siyuan, ZHOU
(2017)
"Preparation of Nanocrystalline Cellulose from Food By-products and its Applications in Food Industry,"
Food and Machinery: Vol. 33:
Iss.
2, Article 1.
DOI: 10.13652/j.issn.1003-5788.2017.02.001
Available at:
https://www.ifoodmm.cn/journal/vol33/iss2/1
References
[1] BRINCHI L, COTANA F, FORTUNATI E, et al. Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications[J]. Carbohydrate Polymers, 2013, 94(1): 154-169.
[2] BRITO B S L, PEREIRA F V, PUTAUX J L, et al. Preparation, morphology and structure of cellulose nanocrystals from bamboo fibers[J]. Cellulose, 2012, 19(5): 1 527-1 536.
[3] ROSA M F, MEDEIROS E S, MALMONGE J A, et al. Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior[J]. Carbohydrate Polymers, 2010, 81(1): 83-92.
[4] LU Ping, HSIEH Y L. Cellulose isolation and core-shell nanostructures of cellulose nanocrystals from chardonnay grape skins[J]. Carbohydrate Polymers, 2012, 87(4): 2 546-2 553.
[5] CHEN D, LAWTON D, THOMPSON M R, et al. Biocomposites reinforced with cellulose nanocrystals derived from potato peel waste[J]. Carbohydrate Polymers, 2012, 90(1): 709-716.
[6] FENG Xin, MENG Xiang-hao, ZHAO Jing-peng, et al. Extraction and preparation of cellulose nanocrystals from dealginate kelp residue: structures and morphological characterization[J]. Cellulose, 2015, 22(3): 1 763-1 772.
[7] SLAVUTSKY A M, BERTUZZI M A. Water barrier properties of starch films reinforced with cellulose nanocrystals obtained from sugarcane bagasse[J]. Carbohydrate Polymers, 2014, 110(18): 53-61.
[8] 刘卫国, 何方, 黄振, 等. 甘蔗渣纳米纤维素的制备研究[J]. 现代化工, 2015, 35(5): 56-59.
[9] JOHAR N, AHMAD I, DUFRESNE A. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk[J]. Industrial Crops & Products, 2012, 37(1): 93-99.
[10] ROSA S M L, REHMAN N, MIRANDA M I G D, et al. Chlorine-free extraction of cellulose from rice husk and whisker isolation[J]. Carbohydrate Polymers, 2012, 87(2): 1 131-1 138.
[11] SILVERIO H A, NETO W P F, DANTAS N O, et al. Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites[J]. Industrial Crops & Products, 2013, 44(2): 427-436.
[12] NETO W P F, SILVERIO H A, DANTAS N O, et al. Extraction and characterization of cellulose nanocrystals from agro-industrial residue-Soy hulls[J]. Industrial Crops & Products, 2013, 42(1): 480-488.
[13] KALLEL F, BETTAIEB F, KHIARI R, et al. Isolation and structural characterization of cellulose nanocrystals extracted from garlic straw residues[J]. Industrial Crops & Products, 2016, 87: 287-296.
[14] CHEN Guo-yin, YU Hou-yong, ZHANG Cai-hong, et al. A universal route for the simultaneous extraction and functionalization of cellulose nanocrystals from industrial and agricultural celluloses[J]. Journal of Nanoparticle Research, 2016, 18(2): 1-14.
[15] NAGALAKSHMAIAH M, KISSI N E, MORTHA G, et al. Structural investigation of cellulose nanocrystals extracted from chili leftover and their reinforcement in cariflex-IR rubber latex[J]. Carbohydrate Polymers, 2016, 136: 945-954.
[16] REDDY J P, RHIM J W. Isolation and characterization of cellulose nanocrystals from garlic skin[J]. Canadian Journal of Microbiology, 2000, 46(7): 633-642.
[17] 刘潇, 董海洲, 侯汉学. 花生壳纳米纤维素的制备及其对淀粉膜性能的影响[J]. 中国粮油学报, 2015, 30(1): 112-116.
[18] 刘潇, 董海洲, 侯汉学. 花生壳纳米纤维素的制备与表征[J]. 现代食品科技, 2015, 31(3): 172-176.
[19] 陈珊珊, 陶宏江, 王亚静, 等. 葵花籽壳纳米纤维素制备工艺优化及其表征[J]. 农业工程学报, 2015, 31(15): 302-308.
[20] 马中苏, 王亚静, 陈珊珊, 等. 绿豆皮纳米纤维素对浓缩乳清蛋白可食膜性能的影响[J]. 现代食品科技, 2016, 32(5): 40-46.
[21] 吴巧妹, 陈思源, 陈燕丹. 丝瓜络纳米纤维素晶体的制备与表征[J]. 西北农林科技大学学报: 自然科学版, 2014, 42(4): 229-234.
[22] 吴巧妹, 王嘉伦, 刘晓泽, 等. 丝瓜络纳米纤维素晶体制备工艺的优化[J]. 西北农林科技大学学报:自然科学版, 2015, 43(4): 179-184.
[23] 庄森炀, 唐丽荣, 卢麒麟, 等. 磷酸锆辅助催化水解菌糠制备纳米纤维素晶体的性能[J]. 化工进展, 2016, 35(3): 866-871.
[24] LU Qi-lin, TANG Li-rong, LIN Feng-cai, et al. Preparation and characterization of cellulose nanocrystals via ultrasonica-tion-assisted FeCl3 -catalyzed hydrolysis[J]. Cellulose, 2014, 21(5): 3 497-3 506.
[25] TAN Xiao-yun, SHARIFAH BEE A H, LAI C W. Preparation of high crystallinity cellulose nanocrystals (CNCs) by ionic liquid solvolysis[J]. Biomass & Bioenergy, 2015, 81: 584-591.
[26] MAN Z, MUHAMMAD N, SARWONO A, et al. Preparation of Cellulose Nanocrystals Using an Ionic Liquid[J]. Journal of Polymers and the Environment, 2011, 19(3): 726-731.
[27] HABIBI Y, LUCIA L A, ROJAS O J. Cellulose nanocrystals: chemistry, self-assembly, and applications[J]. Chemical Reviews, 2010, 110(6): 3 479-3 500.
[28] WANG Neng, DING En-yong, CHENG Rong-shi. Preparation and liquid crystalline properties of spherical cellulose nanocrystals[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2008, 24(1): 5-8.
[29] ESPINO E, CAKIR M, DOMENEK S, et al. Isolation and characterization of cellulose nanocrystals from industrial by-products ofAgave tequilana, and barley[J]. Industrial Crops & Products, 2014, 62: 552-559.
[30] LU Hong-jia, GUI Yu, ZHENG Long-hui, et al. Morphological, crystalline, thermal and physicochemical properties of cellulose nanocrystals obtained from sweet potato residue[J]. Food Research International, 2013, 50(1): 121-128.
[31] ZHANG Kai-tao, SUN Pei-pei, LIU He, et al. Extraction and comparison of carboxylated cellulose nanocrystals from bleached sugarcane bagasse pulp using two different oxidation methods[J]. Carbohydrate Polymers, 2016, 138: 237-243.
[32] MANDAL A, CHAKRABARTY D. Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization[J]. Carbohydrate Polymers, 2011, 3(3): 1 291-1 299.
[33] SILVERIO H A, NETO W P F, PASQUINI D. Effect of incorporatingcellulose nanocrystals from corncob on the tensile, thermal and barrier properties of poly(vinyl alcohol) nanocomposites[J]. Journal of Nanomaterials, 2013, 2013: 11 473-11 482.
[34] ABOU-ZEID R E, HASSAN E A, BETTAIEB F, et al. Use of cellulose and oxidized cellulose nanocrystals from olive stones in chitosan bionanocomposites[J]. Journal of Nanomaterials, 2015, 2015: 1-9.
[35] LI Wei, YUE Jin-quan, LIU Shou-xin. Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly(vinyl alcohol) composites[J]. Ultrasonics Sonochemistry, 2012, 19(3): 479-485.
[36] KHAN A, KHAN R A, SALMIERI S, et al. Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films[J]. Carbohydrate Polymers, 2012, 90(4): 1 601-1 608.
[37] AZEREDO H M C, ROSA M F, MATTOSO L H C. Nanocellulose in bio-based food packaging applications[J].Industrial Crops & Products, 2016, 97: 664-671.
[38] AZEREDO H M C, MIRANDA K W E, ROSA M F, et al. Edible films from alginate-acerola puree reinforced with cellulose whiskers[J]. LWT - Food Science and Technology, 2012, 46(1): 294-297.
[39] CHEN Yun, LIU Chang-hua, CHANG P R, et al. Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time[J]. Carbohydrate Polymers, 2009, 76(4): 607-615.
[40] WANG Bei, SAIN M. Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers[J]. Composites Science & Technology, 2007, 67(11/12): 2 521-2 527.
[41] HU Zhen, MARWAY H S, KASEM H, et al. Dried and redispersible cellulose nanocrystal Pickering emulsions[J]. ACS Macro Letters, 2016, 5(2): 185-189.
[42] SALAS C, NYPELO T, RODRIGUEZ-ABREU C, et al. Nanocellulose properties and applications in colloids and interfaces[J]. Current Opinion in Colloid & Interface Science, 2014, 19(5): 383-396.
[43] WEN Chun-xia, YUAN Qi-peng, LIANG Hao, et al. Preparation and stabilization of d -limonene Pickering emulsions by cellulose nanocrystals[J]. Carbohydrate Polymers, 2014, 112(2): 695-700.
[44] WANG Wen-hang, DU Guan-hua, LI Cong, et al. Preparation of cellulose nanocrystals from asparagus (Asparagus officinalis, L.) and their applications to palm oil/water Pickering emulsion[J]. Carbohydrate Polymers, 2016, 151: 1-8.
[45] ZOPPE J O, VENDITTI R A, ROJAS O J, et al. Pickering emulsions stabilized by cellulose nanocrystals grafted with thermo-responsive polymer brushes[J]. Journal of Colloid & Interface Science, 2011, 369(1): 202-209.
[46] LAM S, VELIKOV K P, VELEV O D. Pickering stabilization of foams and emulsions with particles of biological origin[J]. Current Opinion in Colloid & Interface Science, 2014, 19(5): 490-500.
[47] WINUPRASITH T, SUPHANTHARIKA M. Properties and stability of oil-in-water emulsions stabilized by microfibrillated cellulose from mangosteen rind[J]. Food Hydrocolloids, 2015, 43: 690-699.
[48] GMEZ HC, SERPA A, VELASQUEZ-COCK J, et al. Vegetable nanocellulose in food science: A review[J]. Food Hydrocolloids, 2016, 57: 178-186.
[49] 刘涛, 刘宁, 方桂珍. 纤维素及其衍生物在食品及医药行业的开发与应用[J]. 食品科学, 2009, 30(15): 276-280.