Abstract
In this study, UV spectroscopy, Fourier transform infrared spectroscopy and scanning electron microscopy, were used to study the microstructure of rabbit-skin collagen, respectively. The effects of temperature, collagen concentration, pH value and ionic strength on aggregation properties of collage were also studied. The results of UV spectroscopy and Fourier transform infrared spectroscopy showed that the absorption peak and the corresponding wavelength in accordance with the characteristics of type Ⅰ collagen. Moreover, the results of scanning electron microscopy showed that the collagen was irregular dense sheet film, partially wrinkled on the surface. Furthermore, the results of aggregation properties of rabbit-skin collagen indicated that with the increase of temperature and collagen concentration, the aggregation speed of collagen accelerated and the degree of aggregation increased. In acidic environment, the aggregation time was relatively long. When pH increased from 7 to 8, the degree of self-assembly increased first and then decreased. The degree and the speed of self-assembly were the highest at pH 7.2. With the increase of ion concentration, the aggregation rate first increased and then decreased. The collagen reached the fastest aggregation speed and the highest degree of self-assembly in 120 mmol/L NaCl solution.
Publication Date
2-28-2017
First Page
11
Last Page
16
DOI
10.13652/j.issn.1003-5788.2017.02.003
Recommended Citation
Mingsi, MA; Yuhao, ZHANG; Liang, MA; Xuemeng, WANG; Shuang, HAN; and Xiaojie, ZHANG
(2017)
"Microstructure of rabbit-skin collagen and influences of different factors on its aggregation,"
Food and Machinery: Vol. 33:
Iss.
2, Article 3.
DOI: 10.13652/j.issn.1003-5788.2017.02.003
Available at:
https://www.ifoodmm.cn/journal/vol33/iss2/3
References
[1] NAKAMURA Y N, IWAMOTO H, ONO Y, et al. Relation-ship among collagen amount, distribution and architecture in the M. longissimus thoracis and M. pectoralis profundus from pigs[J]. Meat Science, 2003, 64(1): 43-50.
[2] LIU Da-song, NIKOO M, BORAN G, et al. Collagen and gelatin[J]. Annual Review of Food Science and Technology, 2015, 6(6): 527-557.
[3] WOO Jin-wook, YU Sung-jae, CHO Seung-mock, et al. Extraction optimization and properties of collagen from yellowfin tuna (Thunnus albacares) dorsal skin[J]. Food Hydrocolloids, 2008, 22(5): 879-887.
[4] KARIM A A, BHAT R. Fish gelatin: properties, challenges, and prospects as an alternative to mammalian gelatins[J]. Food Hydrocolloids, 2009, 23(3): 563-576.
[5] PARENTEAU-BAREIL R, GAUVIN R, BERTHOD F. Collagen-based biomaterials for tissue engineering applications [J]. Materials, 2010, 3(3): 1 863-1 887.
[6] 刘少博, 陈复生, 徐卫河, 等. 胶原蛋白的提取及其可食性膜的研究进展[J]. 食品与机械, 2014, 30(2): 242-246.
[7] KAWAGUCHI Y, KONDO E, KITAMURA N, et al. In vivo effects of isolated implantation of salmon-derived crosslinked atelocollagen sponge into an osteochondral defect[J]. Journal of Materials Science: Materials in Medicine, 2011, 22(2): 397-404.
[8] 闫鸣艳. 狭鳕鱼皮胶原蛋白结构和物理特性的研究[D]. 青岛: 中国海洋大学, 2009.
[9] 钟朝辉, 李春美, 顾海峰, 等. 原子力显微镜研究鱼鳞胶原蛋白的溶液聚集行为[J]. 精细化工, 2006, 23(10): 983-987.
[10] FRANZ C M, MULLER D J. Studying collagen self-assembly by time-lapse high-resolution atomic force microscopy [J]. Atomic Force Microscopy in Biomedical Research: Methods and Protocols, 2011, 736(3): 97-107.
[11] 陈丽清, 韩佳冬, 马良, 等. 兔肉品质及其影响因素研究进展[J]. 食品科学, 2011, 32(19): 298-301.
[12] 何翠, 夏杨毅, 张艳, 等. 腌制条件对兔肉湿腌传质动力的影响[J]. 食品与机械, 2016, 32(8): 17-20.
[13] 樊金山. 兔肉加工现状及其发展趋势[J]. 畜牧与饲料科学, 2013, 34(9): 77-78.
[14] 杨佳艺, 李洪军. 我国兔肉加工现状分析[J]. 食品科学, 2010 (17): 429-432.
[15] 王雪蒙, 于玮, 马良, 等. 兔皮胶原蛋白的提取及其结构鉴定[J]. 食品与发酵工业, 2016(4): 209-213.
[16] 杨玲, 赵燕, 鲁亮, 等. 鲟鱼鱼皮胶原蛋白的提取及其理化性能分析[J]. 食品科学, 2013, 34(23): 41-46.
[17] 于玮, 王雪蒙, 马良, 等. 猪皮胶原蛋白提取过程中酶解条件优化及其结构鉴定[J]. 西南大学学报: 自然科学版, 2015(4): 106-113.
[18] 汪海波, 梁艳萍, 汪海婴, 等. 草鱼鱼鳞胶原蛋白的提取及其部分生物学性能[J]. 水产学报, 2012, 36(4): 553-561.
[19] 侯虎, 孙江, 毛家楠, 等. 海参胶原纤维形态及胶原蛋白理化性质研究[J]. 现代食品科技, 2013, 29(7): 1 491-1 495.
[20] 黄亚冬, 邢克智, 刘海学, 等. 点带石斑鱼鱼皮和鳞片胶原蛋白的提取及理化性质的研究[J]. 天津师范大学学报: 自然科学版, 2013, 33(2): 64-69.
[21] 张治国, 肖朝耿, 唐宏刚, 等. 虹鳟鱼皮胶原蛋白提取及其性质研究[J]. 中国食品学报, 2015(8): 148-154.
[22] 刘苏锐, 王坤余, 琚海燕. 猪皮Ⅰ型胶原蛋白的提取及其结构表征[J]. 中国皮革, 2007, 36(7): 43-46.
[23] WANG Lin, AN Xin-xin, YANG Fang-mei, et al. Isolation and characterization of collagens from the skin, scale and bone of deep-sea redfish (Sebastes mentella) [J]. Food Chemistry, 2008, 108(2): 616-623.
[24] MUYONGA J H, COLE C G B, DUODU K G. Characterisation of acid soluble collagen from skins of young and adult Nile perch (Lates niloticus) [J]. Food Chemistry, 2004, 85(1): 81-89.
[25] KITTIPHATTANABAWON P, BENJAKUL S, VISESSANGUAN W, et al. Isolation and characterisation of collagen from the skin of brownbanded bamboo shark (Chiloscyllium punctatum) [J]. Food Chemistry, 2010, 119(4): 1 519-1 526.
[26] MUYONGA J H, COLE C G B, DUODU K G. Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile perch ( Lates niloticus )[J]. Food Chemistry, 2004, 86(3): 325-332.
[27] WANG Lin, LIANG Qiu-fang, CHEN Ting-ting, et al. Characterization of collagen from the skin of Amur sturgeon (Acipencser schrenckii) [J]. Food Hydrocolloids, 2014, 38(38): 104-109.
[28] 温慧芳, 陈丽丽, 白春清, 等. 基于不同提取方法的鮰鱼皮胶原蛋白理化性质的比较[J]. 食品科学, 2016(1): 74-81.
[29] 姚攀. 鳙鱼皮胶原蛋白的提取, 性能分析及体外自组装行为研究[D]. 武汉: 武汉轻工大学, 2013.
[30] ZHANG Xi, OOKAWA Mika, TAN Yong-kai, et al. Biochemical characterisation and assessment of fibril-forming ability of collagens extracted from Bester sturgeon Huso huso× Acipenser ruthenus[J]. Food Chemistry, 2014, 160: 305-312.
[31] BAE I, OSATOMI K, YOSHIDA A, et al. Characteristics of a self-assembled fibrillar gel prepared from red stingray collagen[J]. Fisheries Science, 2009, 75(3): 765-770.