Abstract
Using chitosan modified by cinnamaldehyde to decorate carbon nanotubes, a novel cinnamaldehyde/ chitosan/ carbon nanotubes composites were synthesized. The modified composites and its corresponding intermediates were characterized by FT-IR, XRD, high-resolution SEM and TGA. Taking porcine pancreatic lipase as a model, explored the properties of cinnamaldehyde/ chitosan/ carbon nanotubes composite materials. The results indicated that when the conditions were: molar ratio of cinnamaldehyde to chitosan of 41, pH =7.0 and the enzyme concentration of 5 mg/mL, and the maximum load of 248 mg/g and the enzyme activity of 8 064 U/g were obtained. The enzyme activity was still above 69% after seven recycles.
Publication Date
3-28-2017
First Page
8
Last Page
12,70
DOI
10.13652/j.issn.1003-5788.2017.03.003
Recommended Citation
Wei, LIU; Chengsheng, JIA; Xiaoming, ZHANG; and Shuqin, XIA
(2017)
"Preparation of carbon nanotube composite functionalized by cinnamaldehyde/chitosan and application for lipase immobilization,"
Food and Machinery: Vol. 33:
Iss.
3, Article 2.
DOI: 10.13652/j.issn.1003-5788.2017.03.003
Available at:
https://www.ifoodmm.cn/journal/vol33/iss3/2
References
[1] AL-SALEH M H, ABDUL-JAWAD S, EL-GHANEM H M. Electrical and dielectric behaviors of dry-mixed CNT/UHMWPE nanocomposites[J]. High Performance Polymers, 2014, 26(2): 205-211.
[2] YANG S B, KONG B S, JUNG D H, et al. Recent advances in hybrids of carbon nanotube network films and nanomaterials for their potential applications as transparent conducting films[J]. Nanoscale, 2011, 3(4): 1 361-1 373.
[3] CHEN R J, ZHANG Yue-gang, WANG Dun-wei, et al. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization[J]. Journal of the American Chemical Society, 2001, 123(16): 3 838-3 839.
[4] ZHANG Jian, LEE J K, WU Yue, et al. Photoluminescence and electronic interaction of anthracene derivatives adsorbed on sidewalls of single-walled carbon nanotubes[J]. Nano Letters, 2003, 3(3): 403-407.
[5] MURAKAMI H, NOMURA T, NAKASHIMA N. Noncovalent porphyrin-functionalized single-walled carbon nanotubes in solution and the formation of porphyrin-nanotube nanocomposites[J]. Chemical Physics Letters, 2003, 378(5/6): 481-485.
[6] MURAKAMI T, AJIMA K, MIYAWAKI J, et al. Drug-loaded carbon nanohorns: adsorption and release of dexamethasone in vitro[J]. Molecular pharmaceutics, 2004, 1(6): 399-405.
[7] KAROUSIS N, TAGMATARCHIS N, TASIS D. Current Progress on the Chemical Modification of Carbon Nanotubes[J]. Chemical Reviews, 2010, 110(9): 5 366-5 397.
[8] TANG Q Y, SHAFIQ I, CHANL Y C, et al. Study of the dispersion and electrical properties of carbon nanotubes treated by surfactants in dimethylacetamide[J]. Journal of Nanoscience & Nanotechnology, 2010, 10(8): 4 967-4 974.
[9] BYRNE M T, GUN'KO Y K. Recent Advances in Research on Carbon Nanotube-Polymer Composites[J]. Advanced Materials, 2010, 22(15): 1 672-1 688.
[10] YESIL S, BAYRAM G. Poly(ethylene terephthalate)/carbon nanotube composites prepared with chemically treated carbon nanotubes[J]. Polymer Engineering & Science, 2011, 51(7): 1 286-1 300.
[11] 王坤, 李忠海. 碳纳米管改性及其在食品检测中的应用进展[J]. 食品与机械, 2016, 32(3): 217-221.
[12] LIU Zhuang, SUN Xiao-ming, NAKAYAMA-RATCHFORD N, et al. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery[J]. ACS Nano, 2007, 1(1): 50-56.
[13] ZHU Gang-bing, YI Yin-hui, HAN Zhi-xiang, et al. 3,4,9,10-Perylene Tetracarboxylic Acid Noncovalently Modified Multiwalled Carbon Nanotubes: Synthesis, Characterization, and Application for Electrochemical Determination of 2-Aminonaphthalene[J]. Analytical Letters, 2014, 47(14):2 370-2 383.
[14] NUMATA M, SUGIKAWA K, KANEKO K, et al. Creation of Hierarchical Carbon Nanotube Assemblies through Alternative Packing of Complementary Semi-Artificial β-1,3-Glucan/Carbon Nanotube Composites[J]. Chemistry-A European Journal, 2008, 14(8): 2 398-2 404.
[15] MARTIN W, ZHU Wu-sheng, KRILOV G. Simulation study of noncovalent hybridization of carbon nanotubes by single-stranded DNA in water[J]. Journal of Physical Chemistry B, 2008, 112(112): 16 076-16 089.
[16] LI L, NICOLAS R J, CHEN Chi-yen, et al. Comparative study of photoluminescence of single-walled carbon nanotubes wrapped with sodium dodecyl sulfate, surfactin and polyvinylpyrrolidone[J]. Nanotechnology, 2005, 16: S202-S205.
[17] JI Pei-jun, TAN Hui-shan, XU Xin, et al. Lipase covalently attached to multiwalled carbon nanotubes as an efficient catalyst in organic solvent[J]. Aiche Journal, 2010, 56(11): 3 005-3 011.
[18] LI Li-li, FENG Wei, PAN Ke-hou. Immobilization of lipase on amino-cyclodextrin functionalized carbon nanotubes for enzymatic catalysis at the ionic liquid-organic solvent interface[J]. Colloids & Surfaces B Biointerfaces, 2012, 102C(2): 124-129.
[19] JUANG R S, SHIAU R C. Metal removal from aqueous solutions using chitosan-enhanced membrane filtration[J]. Journal of Membrane Science, 2000, 165(2): 159-167.
[20] NGAH W S W, TEONG L C, HANAFIAH M A K M. Adsorption of dyes and heavy metal ions by chitosan composites: A review[J]. Carbohydrate Polymers, 2011, 83(4): 1 446-1 456.
[21] SUN Sheng-ling, WANG Ai-qin. Adsorption kinetics of Cu(II) ions using N,O-carboxymethyl-chitosan.[J]. Journal of Hazardous Materials, 2006, 131(1/3): 103-111.
[22] LONG De-wu, WU Guo-zhong, ZHU Guang-lai. Noncoval-ently modified carbon nanotubes with carboxymethylated chitosan: a controllable donor-acceptor nanohybrid[J]. Interna-tional Journal of Molecular Sciences, 2008, 9(2): 120-130.
[23] AZ'HARI S, GHAYEB Y. Effect of chirality, length and diameter of carbon nanotubes on the adsorption of 20 amino acids: a molecular dynamics simulation study[J]. Molecular Simulation, 2014, 40(5): 392-398.
[24] BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 2015, 72(s 1/2): 248-254.
[25] 中华人民共和国药典: 二部[S]. 2005年版. 北京: 化学工业出版社, 2005: 626-627.
[26] PRLAINOVIC N , BEZBRADICA D I, KNEEVIC-JUGOVIC Z D, et al. Adsorption of lipase from Candida rugosa, on multi walled carbon nanotubes[J]. Journal of Industrial & Engineering Chemistry, 2013, 19(1): 279-285.