Abstract
In order to increase the production of the antimicrobial substances by P.bovis BD3526 in wheat bran broth,the effect of individual fermentation parameter including cultivation temperature, period, inoculum ratio, age of the inoculum and concentration of wheat bran on the inhibitory intensity of the fermented wheat bran broth was determined, employing Micrococcus luteus as the indicator. Based on the results of single factor tests, four variables i.e. cultivation temperature, cultivation period, inoculum ratio and concentration of wheat bran were employed to further optimize the fermentation conditions for antimicrobial components production by the strain BD3526 by response surface methodology. The optimal cultivation conditions for BD3526 to produce antimicrobial substance were composed of a cultivation temperature of 29 ℃, a cultivation period of 73 h, an inoculum ratio of 3.2% and a wheat bran concentration of 4.2%. The inhibitory zone of the cultivated wheat bran broth under the optimal condition on M.luteus reached 19.88 mm in diameter, and the potency of bacteriocin produced under the optimal conditions was raised by 100% and 300% as compared to that produced under the original fermentation conditions.
Publication Date
3-28-2017
First Page
31
Last Page
36
DOI
10.13652/j.issn.1003-5788.2017.03.008
Recommended Citation
Bangqing, HUA; Qiuxiang, ZHANG; Zhenmin, LIU; and Zhengjun, WU
(2017)
"Optimization on cultivation conditions for antimicrobial substance production by Paenibacillus bovis sp.nov. BD3526,"
Food and Machinery: Vol. 33:
Iss.
3, Article 7.
DOI: 10.13652/j.issn.1003-5788.2017.03.008
Available at:
https://www.ifoodmm.cn/journal/vol33/iss3/7
References
[1] ANGIOLILLO L, CONTE A, NOBILE M A D. Food Additives: Natural Preservatives [M]// Encyclopedia of Food Safety.[S.l.]: Elsevier, 2014: 474-476.
[2] CLEVELAND J, MONTVILLE T J, NES I F, et al. Bacteriocins: safe, natural antimicrobials for food preservation [J]. International Journal of Food Microbiology, 2001, 71(1): 1-20.
[3] DEEGAN L H, COTTER P D, HILL C, et al. Bacteriocins: Biological tools for bio-preservation and shelf-life extension [J]. International Dairy Journal, 2006, 16(9): 1 058-1 071.
[4] 贡汉生, 孟祥晨. 乳酸菌细菌素分类与作用机制[J]. 食品与发酵工业, 2008, 34(1): 105-109.
[5] GAO C, HAN J, LIU Z, et al. Paenibacillus bovis sp. nov., isolated from raw yak (Bos grunniens) milk [J]. International journal of systematic and evolutionary microbiology, 2016, 66(3): 1 413-1 418.
[6] 刘玉娟, 韩瑨, 吴江, 等. 类芽孢杆菌 BD3526 抑菌活性物质的初步分离及性质测定[J]. 天然产物研究与开发, 2015, 27(7): 1 176-1 180.
[7] 苏芳, 李莉, 罗斌, 等. 戊糖乳杆菌WH12-2-1产细菌素条件的优化[J]. 中国乳品工业, 2010, 38(3): 10-15.
[8] OH S, RHEEM S, SIM J, et al. Optimizing conditions for the growth of Lactobacillus casei YIT 9018 in tryptone-yeast extract-glucose medium by using response surface methodology [J]. Applied & Environmental Microbiology, 1995, 61(11): 3 809-3 814.
[9] 胡敏, 郝林, 贾丽艳. 枯草芽孢杆菌产细菌素发酵条件的优化[J]. 食品科学, 2014, 35(9): 198-202.
[10] 刘国荣, 张郡莹, 王成涛, 等. 响应面法优化双歧杆菌B04代谢产细菌素的发酵条件[J]. 食品科学, 2013, 34(3): 147-152.
[11] 陈琳, 孟祥晨. 响应面法优化植物乳杆菌代谢产细菌素的发酵条件[J]. 食品科学, 2011, 32(3): 176-180.
[12] 佟世生, 解洛香, 徐乐, 等. 植物乳杆菌代谢产细菌素的培养基优化[J]. 现代食品科技, 2012, 28(2): 152-155.
[13] 鲁晶晶, 王远亮, 谢梦琴. 植物乳杆菌LJ-3产细菌素的响应面优化[J]. 食品与机械, 2014, 30(5): 242-246.
[14] GRATTEPANCHE F, AUDET P, LACROIX C. Milk fermentation by functional mixed culture producing nisin Z and exopolysaccharides in a fresh cheese model [J]. International Dairy Journal, 2007, 17(2): 123-132.
[15] 刘冬梅, 李理, 杨晓泉, 等. 用牛津杯法测定益生菌的抑菌活力[J]. 食品研究与开发, 2006, 27(3): 110-111.
[16] PALACIOS J, VIGNOLO G, FAR AS M E, et al. Purification and amino acid sequence of lactocin 705, a bacteriocin produced by Lactobacillus casei CRL 705 [J]. Microbiological Research, 1999, 154(2): 199-204.
[17] 崔燕丽, 韩瑨, 吴正钧. Paenibacillus bovis BD3526产胞外多糖的培养条件优化[J]. 食品与发酵工业, 2016, 42(5): 108-13.