•  
  •  
 

Abstract

With sweet potato residue as raw material, cellulose nanocrystals (CNCs) were achieved through ultrasonic-assisted acid method. Carboxymethyl cellulose nanocrystals (N-CMCs) were produced by carboxymethylation of CNCs. Transmission electron microscopy (TEM) showed that the N-CMCs were still typical spherical nano particles and slightly larger with a uniform diameter ranging from 30 nm to 50 nm. They were more loosely packed than the CNCs and had a porous surface structure. The crystallinity index of the N-CMCs (52.83%) was lower than that of CNCs (73.27%), whereas the thermal stability of the former was higher. N-CMCs could be used as an excellent food additive, with low viscosity less than 25 mPa瘙簚s, high purity more than 99.5% and nano-sized scale.

Publication Date

3-28-2017

First Page

37

Last Page

41

DOI

10.13652/j.issn.1003-5788.2017.03.009

References

[1] PAAKKO M, ANKERFORS M, KOSONEN H, et al. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels[J]. Biomacromolecules, 2007, 8(6): 1 934-1 941.
[2] 董凤霞, 刘文, 刘红峰. 纳米纤维素的制备及应用[J]. 中国造纸, 2012(6): 68-73.
[3] 甄文娟, 单志华. 纳米纤维素在绿色复合材料中的应用研究[J]. 现代化工, 2008, 28(6): 85-88.
[4] AHOLA S, MYLLYTIE P, BSTERBERG M, et al. Effect of polymer adsorption on cellulose nanofibril water binding capacity and aggregation[J]. Bioresources, 2008, 3(4): 1 315-1 328.
[5] HEUX L, CHAUVE G, BONINI C. Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals Suspensions in nonpolar Solvents[J]. Langmuir, 2000, 16(21): 8 210-8 212.
[6] BONDESON D, OKSMAN K. Dispersion and characteristics of surfactant modified cellulose whisker nanocomposites[J]. Compos Interface, 2007, 14(7/9): 617-630.
[7] KIM J, MOMTERO G, HABIBI Y, et al. Dispersion of cellulose crystallites by nonionic surfactants in a hydrophobic polymer matrix[J]. Polym Eng Sci, 2009, 49(10): 2 054-2 061.
[8] ROMAN M, WINTER W T. Cellulose nanocrystals for thermo plastic reinforcement: effect of filler surface chemistry on composite properties[J]. ACS Symposium Series-Cellulose Nanocomposites, 2006, 938: 99-113.
[9] 王能, 丁恩勇, 程铭时. 纳米纤维素表面改性研究[J] 高分子学报, 2006, 1(8): 982-987.
[10] BERLLOZ S, MOLINA-BOISSEAU S, NISHIYAMA Y, et al. Gas-Phase Surface Esterification of Cellulose Microfibrils andWhiskers[J]. Biomacromolecules, 2009, 10(8): 2 144-2 151.
[11] DE NOOY A E J, BESEMER A C, VAN BEKKUM H. Highly selective tempo mediated oxidation of primary alcohol groups in polysaccharides[J]. Recl TraV Chim Pays-Bas, 1994, 113(3): 165-166.
[12] ARAKI J, WADA M, KUGA S. Stabilization of a cellulose microcrystal suspension by poly (ethylene glycol) grafting [J]. Langmuir, 2001, 17(1): 21-27.
[13] HABIBI Y, CHANZY H, VIGNON M R. TEMPO-mediated surface oxidation of cellulose whiskers[J]. Cellulose, 2006, 13(6): 679-687.
[14] GOUSSE C, CHANZY H, EXCOFFIER G, et al. Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents[J]. Polymer, 2002, 43(9): 2 645-2 651.
[15] EYHOLZER C, BORDEANU N, LOPEZ-SUEVOS F, et al. Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form[J]. Cellulose, 2010, 17(1): 19-30.
[16] 陆红佳, 文红丽, 刘雄. 超声波辅助酸法制备纳米薯渣纤维素的工艺研究[J]. 中国粮油学报, 2012, 27(4): 96-100.
[17] DAPIA S, SANTOS V, PARAJ J C. Carboxymethylcellulose from totally chlorine free-bleached milox pulps[J]. Bioresource Technology, 2003, 89(3): 289-296.
[18] HEBEISH A A, EI-RAFIE M H, ABDEL-MOHDY F A. et al. Carboxymethyl cellulose for green synthesis and stabilization of silver nanoparticles[J]. Carbohydrate Polymers, 2010, 82(3): 933-941.
[19] 程亚娇, 郭婷, 李本姣, 等. 改性纳米薯渣纤维素的制备优化及其形貌表征[J]. 食品与发酵工业, 2016, 42(3): 142-149.
[20] LU Hong-jia, GUI Yu, ZHENG Long-hui, et al. Morphological, crystalline, thermal and physicochemical properties of cellulose nanocrystals obtained from sweet potato residue[J]. Food Research International, 2013, 50(1): 121-128.
[21] ERONEN P, OSTERBERG M, JAASKELAINEN A S. Effect of alkaline treatment on cellulose supramolecular structure studied with combined confocal Raman spectroscopy and atomic force microscopy[J]. Cellulose, 2009, 16(2): 167-178.
[22] WANG Neng, DING En-yong, CHENG Rong-shi. Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups[J]. Polylner, 2007, 48(12): 3 486-3 493.
[23] SESGAL L, CREELY J J, MARTIN A E, et al. An empirical method for estimating the degree of crystallinity of native cellulose u-sing X-ray diffractometer[J]. Textile Research Journal, 1959, 29(10): 786-794.
[24] VARMA A J, CH AVAN V B. Thermal Properties of oxidized cellulose[J]. Cellulose, 1995, 2(1): 41-49.
[25] LERDKANEHANAPORN S, DOLLIMORE D, ALEXAND-ER K S. A simultaneous TG-DTA study of the degradation in nitrogen of cellulose to carbon, alone and in the Presence of other pharmaceutical excipients[J]. Thermochim Acta, 1998, 324(1): 25-32.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.