•  
  •  
 

Abstract

In order to precisely predict the remaining shelf life of Penaeus Vannamei, the relationship between quality indexes and remaining shelf life and the quality change process of it during the storage process were studied. The sensory and physical-chemical indexes, and microorganisms of P. Vannamei at 277 K, 272.2 K and 255 K were first tested in this study. Then, the prediction models of the shelf life of P. vannamei were established for the comprehensive and some key indexes of its quality, and this were based on both the support vector machine and the BP neural network models. The results showed that the prediction accuracies of the shelf-life prediction models based on the comprehensive indexes of P. Vannamei (97.71% for SVM model and 91.41% for BP model) were higher than those of the prediction models based on several key indexes (84.08% for SVM model and 83.76% for BP model). Meanwhile, the prediction accuracies of the prediction models based on support vector machine (84.08% for key indexes and 97.71% for comprehensive indexes) were higher than those of BP prediction models (83.76% for key indexes and 91.41% for comprehensive indexes). Moreover, the prediction accuracy of the support vector machine (SVM) model based on the comprehensive indexes was 97.71%, which were the highest among the four models. The conclusion also provided a reference for the application of support vector machine and selection of prediction indexes in the shelf-life of other food fields.

Publication Date

4-28-2017

First Page

105

Last Page

109,116

DOI

10.13652/j.issn.1003-5788.2017.04.021

References

[1] 陈晓宇, 朱志强, 张小栓, 等. 食品货架期预测研究进展与趋势[J]. 农业机械学报, 2015, 46(8): 192-199.
[2] KILCAST D, SUBRAMANIAM P. The stability and shelf-life of food[M]. Abington: Woodhead Publishing Limited, 2000: 2, 70-73.
[3] 林进, 杨瑞金, 张文斌, 等. 动力学模型预测即时南美白对虾货架寿命[J]. 食品科学, 2009, 30(22): 361-365.
[4] 于滨, 王喜波. 鸡蛋贮藏过程中品质变化的动力学模型[J]. 农业工程报, 2012, 28(15): 276-280.
[5] 张利平, 谢晶. Arrhenius方程结合特征指标在蔬菜货架期预测中的应用[J]. 食品与机械, 2012, 28(5): 163-168.
[6] 邢少华, 张小栓, 马常阳, 等. 波动温度下罗非鱼微生物生长动力学模型[J]. 农业机械学报, 2013, 44(7): 194-198.
[7] TOMACA A, MASCHERONIB R H, YEANNES M I. Mode-ling the effect of gamma irradiation on the inactivation and growth kinetics of psychrotrophic bacteria in squid tings during refrigerated storage. Shelf-life predictions[J]. Journal of Food Engineering, 2013, 117(2): 211-216.
[8] 王欢, 谢超, 孙媛. 凡纳滨对虾即时虾仁在常温保藏中的货架期预测及品质分析[J]. 海洋与湖沼, 2013, 44(4): 1 095-1 102.
[9] AHMAD I, JEENANUNTA C, CHANVARASUTH P, et al. Prediction of physical quality parameters of frozen shrimp (Litopenaeus vannamei): an artificial neural networks and genetic algorithm approach[J]. Food Bioprocess Technol, 2014, 7: 1 433-1 444.
[10] 潘治利, 黄忠民, 王娜, 等. BP神经网络结合有效积温预测速冻水饺变温冷藏货架期[J]. 农业工程学报, 2012, 28(22): 276-281.
[11] 刘雪, 李亚妹, 刘娇, 等. 基于BP神经网络的鲜鸡蛋货架期预测模型[J]. 农业机械学报, 2015, 46(10): 328-334.
[12] MI Chun-qiao, YANG Jian-yu, LI Shao-ming, et al. Prediction of accumulated temperature in vegetation period using artificial neuralnetwork[J].Mathematical and Computer Modelling, 2010, 51(11/12): 1 453-1 460.
[13] 曾祥燕, 赵良忠, 孙文兵, 等. 基于PCA和BP神经网络的葡萄酒品质预测模型[J]. 食品与机械, 2014, 30(1): 40-44.
[14] 傅德成, 刘明堂. 食品感官鉴别手册[M]. 北京: 中国轻工出版社, 1991: 52-53.
[15] 李蕾蕾. 南美白对虾低温贮藏过程中的菌相变化及货架期预测模型的建立[D]. 天津: 天津商业大学, 2014.
[16] VAPNIK V N.数据挖掘中的新方法——支持向量机[M]. 张学工, 译. 北京: 科学出版社, 2000: 71-74.
[17] 陈金凤. 支持向量机回归算法的研究与应用[D]. 无锡: 江南大学, 2008: 4-14.
[18] 王定成, 方延健 , 高理富, 等. 支持向量机回归在线建模及应用[J]. 控制与决策, 2003, 18(1): 89-91.
[19] 王芳. 基于支持向量机的沪深300指数回归预测[D]. 济南: 山东大学, 2015.
[20] 侯伟真. 求解支持向量机的若干优化算法的研究[D]. 青岛: 山东科技大学, 2007: 4-6.
[21] 刘静, 管骁, 易翠平. 近红外光谱技术结合支持向量机对食用醋品牌溯源的研究[J]. 食品与机械, 2016, 32(1): 38-50.
[22] 刘洋, 王涛, 左月明. 基于支持向量机野生蘑菇近红外识别模型[J]. 食品与机械, 2016, 32(4): 92-112.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.