Abstract
To research the influence factors of each parameter in the Weibull distribution function, with lily at different infrared radiation heater’s temperature, different pressure of drying chamber and different thickness of materials being taken as subjects, Weibull distribution function was used to simulate and analyze the dynamic curve of lily. The results showed that Weibull distribution function could simulate the vacuum far-infrared drying process well (R2=0.995 3~0.999 7 ); the size parameter α of the model was significantly correlated with the infrared radiation heater’s temperature (P<0.01). The scale parameter β of the model was related to the pressure of the drying chamber and the materials’ thickness, while temperature did not have significant influence on it; the diffusion coefficient of moisture during drying process ranges was between 0.401 3×10-9~1.307 5×10-9 m2/s and the activation energy of lily during vacuum far-infrared drying process was calculated, equal to 55.130 3 kJ/mol, less than the hot air drying 86.911 2 kJ/mol. Reducing the pressure of the drying chamber does good to keeping the content of the total phenol; both the infrared lily can keep good color in radiation heater’s temperature of 140 ℃ and the pressure of the drying chamber of 12 kPa.
Publication Date
5-28-2017
First Page
71
Last Page
76,82
DOI
10.13652/j.issn.1003-5788.2017.05.014
Recommended Citation
Jing, HUANG; Wenxue, ZHU; Yunhong, LIU; and Lei, LUO
(2017)
"Siroulation and application on Vacuum Far-Infrared Radiation Drying of Lily Based on Weibull Distribution Function,"
Food and Machinery: Vol. 33:
Iss.
5, Article 14.
DOI: 10.13652/j.issn.1003-5788.2017.05.014
Available at:
https://www.ifoodmm.cn/journal/vol33/iss5/14
References
[1] 国家药典委员会. 中华人民共和国药典[S]. 2010版. 北京: 中国药医科技出版社, 2010: 123.
[2] 杜弢, 陈红刚, 连中学, 等. 中药材百合生产现状及发展对策[J]. 中药材, 2011, 34(2): 165-168.
[3] 李卫民, 孟宪纾, 俞腾飞, 等. 百合的药理作用研究[J]. 中药材, 1990(6): 31-35.
[4] BARZEGAR M, ZARE D, STROSHINE R L. An integrated energy and quality approach to optimization of green peas drying in a hot air infrared-assisted vibratory bed dryer[J]. Journal of Food Engineering, 2015, 166: 302-315.
[5] SENEVIRATHNE M, KIM S H, KIM Y D, et al. Effect of far-infrared radiation drying of citrus press-cakes on free radical scavenging and antioxidant activities[J]. Journal of Food Engineering, 2010, 97(2): 168-176.
[6] XU C, LI Y, YU H. Effect of far-infrared drying on the water state and glass transition temperature in carrots[J]. Journal of Food Engineering, 2014, 136(6): 42-47.
[7] 陈君琛, 杨艺龙, 翁敏劼, 等. 即食杏鲍菇热风-真空联合干燥工艺优化[J]. 农业工程学报, 2014(14): 331-338.
[8] 刘云宏, 朱文学, 罗磊, 等. 响应面法优化金银花真空远红外辐射干燥工艺[J]. 食品科学, 2012(14): 100-104.
[9] 张秦权, 文怀兴, 袁越锦. 远红外联合低温真空干燥设备研究与设计[J]. 食品与机械, 2013, 29(1): 157-160.
[10] 肖旭霖. 洋葱真空远红外薄层干燥模型[J]. 食品科学, 2002, 23(5): 40-43.
[11] 徐凤英, 李长友, 陈震. 荔枝在不同红外辐射源下真空干燥优化试验[J]. 农业机械学报, 2009, 40(4): 147-150.
[12] 张静, 李占勇, 董鹏飞, 等. 玉米红外低温真空干燥试验[J]. 食品与机械, 2012, 28(2): 187-189.
[13] 白竣文, 王吉亮, 肖红伟, 等. 基于Weibull分布函数的葡萄干燥过程模拟及应用[J]. 农业工程学报, 2013, 29(16): 278-285.
[14] CORZO O, BRACHO N, PEREIRA A, et al. Weibull distribution for modeling air drying of coroba slices[J]. Food Science & Technology, 2009, 41(10): 2 023-2 028.
[15] 尹慧敏, 聂宇燕, 沈瑾, 等. 基于Weibull分布函数的马铃薯丁薄层热风干燥特性[J]. 农业工程学报, 2016, 32(17): 252-258.
[16] AN Ke-jing, ZHAO Dan-dan, WANG Zheng-fu, et al. Comparison of different drying methods on Chinese ginger (Zingiber officinale Roscoe): Changes in volatiles, chemical profile, antioxidant properties, and microstructure.[J]. Food Chemistry, 2015, 197(Pt B): 1 292-1 300.
[17] SAMOTICHA J, WOJDYO A, LECH K. The influence of different the drying methods on chemical composition and antioxidant activity in chokeberries[J]. LWT-Food Science and Technology, 2016, 66: 484-489.
[18] 胡洁. 果蔬远红外真空干燥技术研究[D]. 无锡: 江南大学, 2008: 4.
[19] 刘云宏, 朱文学, 马海乐. 金银花真空远红外辐射干燥动力学模型[J]. 农业机械学报, 2010, 41(5): 105-109.
[20] 刘云宏, 李晓芳, 苗帅, 等. 南瓜片超声-远红外辐射干燥特性及微观结构[J]. 农业工程学报, 2016, 32(10): 277-286.
[21] 曾目成, 毕金峰, 陈芹芹, 等. 基于Weibull分布函数猕猴桃切片微波真空干燥过程模拟及应用[J]. 中国食品学报, 2015, 15(6): 129-135.
[22] 刘云宏, 苗帅, 罗磊, 等. 基于威布尔分布函数的金银花气调干燥实验研究[J]. 食品科学, 2014, 35(21): 31-35.
[23] MADAMBA P S, DRISCOLL R H, BUCKLE K A. The thin-layer drying characteristics of garlic slices[J]. Journal of Food Engineering, 1996, 29(1): 75-97.
[24] 方小明, 张晓琳, 王军, 等. 荷花粉真空脉动干燥特性和干燥品质[J]. 农业工程学报, 2016, 32(10): 287-295.
[25] BAI Jun-wen, SUN Da-wen, XIAO Hong-wei, et al. Novel high-humidity hot air impingement blanching (HHAIB) pretreatment enhan-ces drying kinetics and color attributes of seedless grapes[J]. Innova-tive Food Science & Emerging Technologies, 2013, 20(4): 230-237.