Abstract
In this study, the electrochemical cyclic voltammetry method was developed for the determination of activity of glucose oxidase. The ferrocene methanol was introducing as the redox probes on cyclic voltammetry, using glassy carbon electrode as working electrode, saturated calomel electrode as reference electrode, platinum wire electrode as the counter electrode and the peak current value of different enzyme activity was required . There was a linear relationship between the peak current in enzyme concentration of 1.282~2.377 U/mL with the correlation coefficient as 0.998, the detection limit as 1.282 U/mL. The enzyme activity of spores from dormancy to germination was detected by this new method, as the enzyme activity of spores decreased after increasing first, reaching the maximum (2.130 U/mL). The traditional methods were tested at the same time. Compared with the traditional method, the proposed electrochemical method has the characteristics of accurate, fast and convenient.
Publication Date
5-28-2017
First Page
87
Last Page
90,94
DOI
10.13652/j.issn.1003-5788.2017.05.017
Recommended Citation
Yangru, LIU; Zhonghai, LI; and Jiali, REN
(2017)
"Detection of GOD activity during the germination of Aspergillus niger spores by electrochemical method,"
Food and Machinery: Vol. 33:
Iss.
5, Article 17.
DOI: 10.13652/j.issn.1003-5788.2017.05.017
Available at:
https://www.ifoodmm.cn/journal/vol33/iss5/17
References
[1] 袁永利, 邹奇波, 黄卫宁. 食品酶制剂改善冷冻面团贮藏稳定性的研究[J]. 食品与机械, 2007, 23(3): 41-44.
[2] 张志国, 王硕, 生庆海. HPLC-ELSD法检测液态奶中的低聚半乳糖[J]. 食品与机械, 2011, 27(3): 68-70.
[3] BANKAR S B, BULE M V, SINGHAL R S, et al. Optimization of Aspergillus niger fermentation for the production of glucose oxidase[J]. Food and Bioprocess Technology, 2009, 2(4): 344.
[4] 李晔. 酶的固定化及其应用[J]. 分子催化, 2008, 22(1): 86-95.
[5] 韩志, 叶剑芝, 罗荣琼. 固定化酶的方法及其在食品中的应用研究进展[J]. 保鲜与加工, 2012, 12(5): 48-53.
[6] RAMACHANDRAN S, FONTANILLE P, PANDEY A, et al. Spores of Aspergillus niger as reservoir of glucose oxidase synthesized during solid-state fermentation and their use as catalyst in gluconic acid production[J]. Letters in Applied Microbiology, 2007, 44(2): 155-160.
[7] RAMACHANDRAN S, FONTANILLE P, PANDEY A, et al. Permeabilization and inhibition of the germination of spores of Aspergillus niger for gluconic acid production from glucose[J]. Bioresource Technology, 2008, 99(11): 4 559-4 565.
[8] MOKSIA J, LARROCHE C, GROS J B. Gluconate production by spores of Aspergillus niger[J]. Biotechnology Letters, 1996, 18(9): 1 025-1 030.
[9] 周玉庭. 黑曲霉孢子作为葡萄糖氧化酶生物催化剂的制备和活性测定方法研究[D]. 长沙: 中南林业科技大学, 2016: 52-59.
[10] 莫随青, 杨建雄, 王子浩. 用固定化黑曲霉C-435孢子生产柠檬酸的初步研究[J]. 陕西师大学报: 自然科学版, 1990(3):93-94.
[11] 翟彤宇, 单金缓. 葡萄糖氧化酶催化反应动力学特征及其抑制剂[J]. 河北大学学报: 自然科学版, 1998, 18(2): 203-205.
[12] HELLMUTH K, PLUSCHKELL S, JUNG J K, et al. Optimization of glucose oxidase production by Aspergillus niger using genetic-and process-engineering techniques[J]. Applied Microbiology and Biotechnology, 1995, 43(6): 978-984.
[13] 徐俊光. 壳寡糖对植物病原真菌的抑菌活性及其机理的初步研究[D]. 大连: 中国科学院大连物理研究所, 2007: 53-54.
[14] 李丽, 罗莉斯, 王艳萍, 等. 刺糖多孢菌生长特性及培养条件的优化[J]. 中国粮油学报, 2010(11): 89-93.
[15] GERIN P, BELLON-FONTAINE M N, ASTHER M, et al. Immobilization of fungal spores by adhesion[J]. Biotechnology and Bioengineering, 1995, 47(6): 677-687.
[16] 王志新. 黑曲霉 A9 葡萄糖氧化酶的提取纯化及其酶学性质研究[D]. 保定: 河北农业大学, 2006:18-21.
[17] PIERCE D T, UNWIN P R, BARD A J. Scanning electrochemical microscopy. 17. Studies of enzyme-mediator kinetics for membrane-and surface-immobilized glucose oxidase[J]. Anal. Chem, 1992, 64(1 795): 1 804.
[18] 蒋雪薇, 李浩, 杨琛, 等. 丝状真菌液体深层发酵菌丝体形态控制研究进展[J]. 食品与机械, 2016, 32(9): 209-212.
[19] ROSENBERG M, SVITEL J, STURDK E, et al. Gluconic acid production by Aspergillus niger with oxygen supply by hydrogen peroxide[J]. Bioprocess Engineering, 1992, 7(7): 309-313.
[20] MOIR A. How do spores germinate?[J]. Journal of Applied Microbiology, 2006, 101(3): 526-530.