Abstract
Fatigue destruction is the main way for scissors arms to lose effectiveness in the scissors aerial work platform in the actual situation. Through finite element modeling of scissors arms established by ANSYS and static strength analysis, the region of stress concentration of scissors arms has been concluded. Stress condition of different locations in scissors structure has been found by setting monitoring sites. It has been showed that the stress condition of the initial position of scissors arms is the biggest, and the maximum stress location lies in the hinge hole of legs of lifting cylinder at the bottom of the scissors arms, which indicates the driving force of lifting cylinder has a great impact on the intensity of scissors arms. Moreover, the test results are in accord with the stimulation result. Using nominal stress method, fatigue life analysis of scissors arms in scissors aerial work platform in ANSYS, the fatigue life can be predicted, which will provide the reliability design and structure perfection of scissors aerial work platform with proof and evidence. The fact that the fatigue life of scissors arms can be predicted by using nominal stress method and fatigue life curves of scissors arms in scissors aerial work platform, provides proof and evidence for the reliability design and structure optimization of scissors aerial work platform.
Publication Date
5-28-2017
First Page
119
Last Page
124
DOI
10.13652/j.issn.1003-5788.2017.05.025
Recommended Citation
Quan, PAN; Zhe, ZHANG; Shanghong, HE; and Guoliang, LIU
(2017)
"Fatigue Life Analysis and Forecast of Scissors Arms in Scissors Aerial Work Platform,"
Food and Machinery: Vol. 33:
Iss.
5, Article 25.
DOI: 10.13652/j.issn.1003-5788.2017.05.025
Available at:
https://www.ifoodmm.cn/journal/vol33/iss5/25
References
[1] 殷彬. 剪叉式机动平台的设计与结构优化[D]. 长沙: 长沙理工大学, 2012: 1-4.
[2] 孙光旭, 袁端才. 液压剪叉式升降台的动力学仿真[J]. 系统仿真学报, 2010, 22(11): 2 650-2 651.
[3] TRAUIS Langbecker. Kinematic Analysis of Deployable Scissor Structures[J]. International Journal of Space Structures, 1999, 14(1): 1-15.
[4] ZHAO Jing-shan, CHU Fu-lei, FENG Zhi-jing. The Mechanism Theory and Application of Deployable Structure Based on SLE[J]. Mechanism and Machine Theory, 2009, 44(2): 324-335.
[5] 孙东明, 董为民, 李珊. 对称驱动的重载剪式升降平台的设计[J]. 机械设计与制造, 2006(6): 23-24.
[6] 邓宏光. 剪叉式升降平台建模及关键参数研究[J]. 机电工程技术, 2005, 34(7): 20-22.
[7] 丁智平. 气液动剪叉式升降平台运动受力分析及其应用[J]. 株洲工学院学报, 1999, 13(16): 49-52.
[8] 倪素环, 张弛. 一种新型液压升降台的研制[J]. 工程机械, 2011, 42(1): 59-61.
[9] 熊顺源, 鲍卫宁. 空气悬架C形托架的疲劳寿命设计[J]. 机械制造, 2008, 46(12): 21-23.
[10] 蒋红旗. 高空作业车作业臂有限元结构分析[J]. 机械研究与应用, 2004, 17(6): 68-69.
[11] 张质文, 虞和谦, 王全诺. 起重机设计手册[M]. 北京: 中国铁道出版社, 2001: 59-62.
[12] 赵宁, 董金善, 杨云雨. 椭圆封头大开孔补强有限元分析及试验研究[J]. 食品与机械, 2016, 32(4): 103-105.
[13] 姚卫星. 结构疲劳寿命分析[M]. 北京: 国防工业出版社, 2003: 63-70.
[14] 王国军. MSC Fatigue 疲劳分析实例教程[M]. 北京: 机械工业出版社, 2009: 42-44.
[15] JOOSTEN M W. New study shows how to predict accumulated drill pipe fatigue[J]. World Oil, 1985(10): 21-25.
[16] 徐才发, 李伟. 起重机主梁舱门处开裂的故障分析[J]. 起重运输机械, 2000(9): 32-35.
[17] 曾春华, 邹十践. 疲劳分析方法与应用[M]. 北京: 国防工业出版社, 1991: 11.