Stimulation and theoretical analysis of heat transfer during the freezing process simulation of beef
Abstract
Freezing is recognized as one of the important technology in food preservation. Considering the change of physical characteristics in beef under the process of the freezing, the equivalent heat capacity method was utilized to process latent heat in phase change, and then the computational fluid dynamics (CFD) numerical simulation technology was applied to simulate the freezing process and establish the differential equations of three dimensional food freezing process. Through the numerical simulation of freezing time, the error between each experimental measuring point (T1, T2, T3, T4 and T5) value and simulation calculation of freezing time were detected to be 5.45%, 3.9%, 5.8%, 4.24%, 5.8%, respectively, and each point temperature real-time simulation of the average error was 1.79 ℃. The results showed that the numerical simulation could predict the beef to freeze time well.
Publication Date
7-28-2017
First Page
117
Last Page
121
DOI
10.13652/j.issn.1003-5788.2017.07.027
Recommended Citation
Wan, TANG; Jinfeng, WANG; Wenjun, LI; and Jing, XIE
(2017)
"Stimulation and theoretical analysis of heat transfer during the freezing process simulation of beef,"
Food and Machinery: Vol. 33:
Iss.
7, Article 27.
DOI: 10.13652/j.issn.1003-5788.2017.07.027
Available at:
https://www.ifoodmm.cn/journal/vol33/iss7/27
References
[1] 张珍, 谢晶, 李杰. 计算流体力学在制冷设备研发中的应用[J]. 食品与机械, 2008, 24(2): 146-150.
[2] 王金锋, 李文俊, 谢晶. 数值模拟在食品冻结过程中的应用[J]. 食品与机械, 2016, 32(10): 200-204.
[3] 周小清, 柳建华, 徐小进, 等. 液氮冻结食品冻结时间的计算方法及实验验证[J]. 制冷学报, 2016, 37(6): 113-118.
[4] PHAM Q T. Freezing time formulas for foods with low moisture content, low freezing point and for cryogenic freezing[J]. Journal of Food Engineering, 2014, 127(4): 85-92.
[5] BECKER B R, FRICKE B A. Freezing times of regularly shaped food items[J]. International Communications in Heat & Mass Transfer, 1999, 26(5): 617-626.
[6] 李杰, 谢晶. 鼓风冻结虾仁时间的数值模拟及实验验证[J]. 农业工程学报, 2009, 25(4): 248-252.
[7] 李杰, 谢晶, 陆方娟. 食品冻结过程温度场及冻结时间的数值模拟与实验研究[J]. 食品工业科技, 2009, 30(2): 123-125, 128.
[8] 屠建祥, 刘宝林. 黄瓜片冻结过程的数值计算及实验研究[J]. 上海理工大学学报, 2000, 22(4): 304-307.
[9] 谢晶, 施骏业, 瞿晓华. 食品热物性的多项式数学模型[J]. 制冷, 2004, 23(4): 6-10.
[10] PHAM Q T. Modelling heat and mass transfer in frozen foods: a review[J]. International Journal of Refrigeration, 2006, 29(6): 876-888.
[11] 李晓宇, 刘斌, 邸倩倩, 等. 马铃薯冻结过程中不同风速对相变界面的影响[J]. 食品科技, 2015(4): 76-81.
[12] WANG Zheng-fu, WU Han, ZHAO Guang-hua, et al. One-dimensional finite-difference modeling on temperature history and freezing time of individual food[J]. Journal of Food Engineering, 2007, 79(2): 502-510.
[13] 殷刚. 平板状食品冻结时间的数值计算[J]. 哈尔滨商业大学学报: 自然科学版, 2006, 22(5): 99-101.
[14] UYAR R, BEDANE T F, ERDOGDU F, et al. Radiofrequ-ency thawing of food products: A computational study[J]. Journal of Food Engineering, 2015, 146: 163-171.
[15] 王石, 田怀璋, 陈林辉, 等. 冰箱试验包传热过程的仿真计算[J]. 西安交通大学学报, 2005, 39(1): 57-60.
[16] MORGAN V T. The Overall Convective Heat Transfer from Smooth Circular Cylinders[J]. Advances in Heat Transfer, 1975, 11: 199-264.