Abstract
Thermal decomposition was studied by DTA/SDTG to indicate the thermal degradation mechanism of a natural identifical flavor precursor of nerol-β-D-glucopyranoside. The heating rate was adapted of 5, 10, and 15 ℃/min in the temperature range from 30 to 500 ℃. The parameters were obtained by Friedman method and Ozawa-Flynn-Wall method. The TG-DTG curves showed that with the increase of heating rate, the thermal degradation temperature was mainly determined by the heating rate B. Initial temperature of mass reduction was T0=1.102 3B+199.4, and that at the maximum rate was Tp=2.102 3B+251.9. However, the final temperature of mass reduction was Tf= 2.602 3B+315.23. The DSC curve showed that the process of melting and decomposition proceeded at the same time. The activation energies Ea of thermal degradation process obtained by Friedman method and Ozawa-Flynn-Wall method were 180.90 kJ/mol and 168.76 kJ/mol respectively. This study aimed to provide more important basic theory data on the mechanism of thermal degradation and offer suggestions for future works.
Publication Date
7-28-2017
First Page
16
Last Page
19
DOI
10.13652/j.issn.1003-5788.2017.07.004
Recommended Citation
Sheng, LEI; Yingliang, ZHAO; Qianxu, YANG; Jianjun, XIA; Meiyu, DING; Xihong, YANG; Wancui, XIE; and Tiandong, ZHANG
(2017)
"Thermal behavior and decomposition kinetics of nerol-β-D-glycoside,"
Food and Machinery: Vol. 33:
Iss.
7, Article 4.
DOI: 10.13652/j.issn.1003-5788.2017.07.004
Available at:
https://www.ifoodmm.cn/journal/vol33/iss7/4
References
[1] LAPCZYNSKI A, FOXENBERG R J, BHATIA S P, et al. Fragrance material review on nerolidol[J]. Food and Chemical Toxicology, 2008, 46(11): 241-244.
[2] YU S G, HILDEBRANDT L, ELSON C. Geraniol, an in-hibitor of mevalonate biosynthesis, suppresses the growth of hepatomas and melanomas transplanted to rats and mice[J]. Journal of Nutrition, 1995, 125(11): 2 763-2 767.
[3] VANNINALORENZI A M, ANTOINE F B. Geraniol restores antibiotic activities against multidrug-resistant isolates from gram-negative species[J]. Antimicrob Agents Chemother, 2009, 53(5): 2 209-2 211.
[4] DZIADAS M, JELEN H H. Comparison of enzymatic and acid hydrolysis of bound flavor compounds in model system and grapes[J]. Food Chemistry, 2015, 190(1): 412-418.
[5] 章平毅, 陆惠秀, 金其璋. 葡萄糖苷的热解研究[J]. 香精香料化妆品, 2002(3): 5-7.
[6] KUMAR K K, ANANTHAKUMAR A A, AHMAD R, et al. Effect of gamma-radiation on major aroma compounds and vanillin glucoside of cured vanilla beans (Vanilla planifolia)[J]. Food Chemistry, 2010, 122(3): 841-845.
[7] MADARASZ J, KANEKO S, OKUYA M, et al. Comparative evolved gas analyses of crystalline and amorphous titanium(IV) oxo-hydroxo-acetylacetonates by TG-FTIR and TG/DTA-MS[J]. Thermochimica Acta, 2009, 489(1/2): 37-44.
[8] WANG Shao-xu, QUAN Shi-guang, DONG Chuang. Kinetic of glass transitionof Zr57.2Al21.4Ni21.4 bulk metallic glass[J]. Thermochimica Acta, 2012, 532(20): 92-95.
[9] 解万翠, 顾小红, 汤坚, 等. DTA/SDTG、 DSC和Py-GC-MS分析叶醇糖苷热降解性质[J]. 江苏大学学报: 自然科学版, 2006, 27(6): 475-478.
[10] 王燕, 刘志华, 刘春波, 等. 烟草中两种紫罗兰醇葡萄糖苷衍生物的分离鉴定及热分析研究[J]. 分析测试学报, 2012, 31(1): 22-28.
[11] 程东伟, 杨锡洪, 解万翠, 等. 化学合成香叶醇-β-D吡喃葡萄糖苷的分离纯化[J]. 食品与机械, 2016, 32(6): 171-175.
[12] XU Guan-cheng, ZHANG Li, LIU Lang, et al. Kinetics of thermal decomposition of mixed-ligand nikkel(II) and copper(II) complexes of 4-acyl pyrazolone derivative and pyridine[J]. Journal of Thermal Analysis and Calorimetry, 2007, 89(2): 547-553.
[13] TOMASZEWICZ E, KOTFICA M. Mechanism and kinetics of thermal decomposition of nickel(II) sulfate(VI) hexahydrate[J]. Journal of Thermal Analysis and Calorimetry, 2004, 77(1): 25-31.
[14] DOWDY D R. Meaningful activation energies for complex systemsi: The application of Ozawa-Flynn-Wall method to multiple reactions[J]. Thermal Analysis, 1987, 32: 137-139.
[15] MARINI A, BERBENNI V, FLOR G. Kinetic parameters from thermogravimetric data[J]. Zeitschrift Fur Naturfors-chung A, 1979, 34(5): 661.
[16] 王韶旭, 林璐, 谭志诚, 等. 柚皮苷的热稳定性及其热分析动力学研究[J]. 化学学报, 2010, 68(21): 2 156-2 160.
[17] 杨继, 杨帅, 段沅杏, 等. 加热不燃烧卷烟烟草材料的热分析研究[J]. 中国烟草学报, 2015, 21(6): 7-13.
[18] POPESCU C. Integral method to analyze the kinetics of heterogeneous reactions non-isothermal conditions a variant on the Ozawae Flynne Wall method[J]. Thermochimica Acta, 1996, 285(1): 9-23.