Abstract
In order to understand the characteristics and mechanism of the thermal process of liquor fermentation system, which have great significance to the temperature control of the fermentation process and the mechanization of the fermentation system. The temperature distribution of fermented grains and the soil surrounding the cylinder are compared in different seasons. The process of biological heat generation and diffusion during the Fen liquor fermentation was confirmed. The temperature variation characteristics of fermented grains and heat conduction is the main mode of heat transfer in fermentation is determined. The important influence of temperature on the thermal process of fermentation is discussed. The numerical simulation of the thermal process of the fermentation system has been realized by measuring the thermal physical parameters of the fermentation system and using the finite element method of partial differential equation, which lays a foundation for the detection and control of fermentation process. The change pattern of fermented grains temperature in fermentation process is the basic characteristics and requirements of liquor fermentation, research and production of liquor should meet.
Publication Date
7-28-2017
First Page
20
Last Page
25
DOI
10.13652/j.issn.1003-5788.2017.07.005
Recommended Citation
Ying, HAN and Jianxin, CHEN
(2017)
"Thermal process pattern and numerical simulation of fen liquor fermentation in underground vats,"
Food and Machinery: Vol. 33:
Iss.
7, Article 5.
DOI: 10.13652/j.issn.1003-5788.2017.07.005
Available at:
https://www.ifoodmm.cn/journal/vol33/iss7/5
References
[1] 赵迎路, 王月梅. 汾酒大米查发酵最高品温的研究[J]. 酿酒科技, 2003(4): 50-52.
[2] 朱引保, 赵迎路. 人工控温酿造汾酒的理论与实践[J]. 酿酒, 2001(6): 37-40.
[3] 杜新勇, 范志勇, 赵殿臣, 等. 北方酱香型白酒生产过程微生物及温度变化规律分析[J]. 酿酒科技, 2013(5): 51-55.
[4] 兰宇, 刘冠琴, 周蓉, 等. 润糁水分及入缸温度对清香白酒发酵的影响[J]. 食品科技, 2015(12): 73-76.
[5] 程铁辕, 郑若欣, 黄治国. 双轮底发酵过程中酒醅温度变化规律的探讨[J]. 中国酿造, 2015(11): 87-90.
[6] 黄治国, 罗惠波, 程铁辕, 等. 酒醅发酵过程中温度变化曲线的实时检测及其数学模型建立[J]. 酿酒科技, 2008(10): 20-22, 25.
[7] 李明春, 程铁辕, 黄治国, 等. 窖池酒醅温度的三维结构图[J]. 食品研究与开发, 2012(2): 21-24.
[8] 赵景龙, 韩兴林, 杨海存, 等. 清香型大曲白酒地缸发酵机理[J]. 食品与发酵工业, 2013(11): 81-84.
[9] 冉晓鸿, 邱树毅, 范怀焰, 等. 董酒小窖发酵工艺参数变化分析[J]. 酿酒科技, 2012(7): 76-78.
[10] 时晓, 周二干, 陈力, 等. 浅议浓香型酒醅发酵温度[J]. 酿酒科技, 2012(2): 67-69.
[11] 尹小满, 张宿义, 敖宗华, 等. 不同季节对浓香型白酒发酵的影响[J]. 酿酒科技, 2014(1): 51-54, 58.
[12] 管瑶, 雷廷武, 刘芳芳, 等. 土壤点源入渗自动测量系统监测滴头下土壤湿润过程[J]. 农业工程学报, 2016(14): 1-7.
[13] 何超, 王再举, 王锁. 冻结壁融化过程中温度场数值模拟分析[J]. 煤炭技术, 2014(12): 79-81.
[14] 胡绳荪, 蒋秀晔, 申俊琦, 等. 基于ANSYS二次开发的焊接温度场前处理系统[J]. 天津大学学报: 自然科学与工程技术版, 2013(11): 1 039-1 044.
[15] 黎文航, 胡婷, 刘川, 等. 旋转电弧窄间隙焊温度场和侧壁熔深的数值模拟[J]. 焊接学报, 2015, 36(8): 5-8.
[16] 李静, 梁剧, 曾诚, 等. 挤出塑料管定型冷却系统的瞬态传热分析[J]. 华南理工大学学报: 自然科学版, 2013, 41(7): 81-86.
[17] 李赏. 电阻网用于路面融雪化冰系统温度场数值模拟的研究[D]. 太原: 太原理工大学, 2015: 19-22.
[18] 路书芬, 王利霞, 张勤星, 等. 基于ANSYS的注塑模三维温度场数值模拟[J]. 塑料科技, 2014, 42(1): 101-105.
[19] 马森, 李晓霞, 赵楠, 等. 利用ANSYS快速计算空中目标温度场[J]. 红外与激光工程, 2012, 41(11): 2 869-2 874.
[20] 邱红. 基于Ansys的压铸模具温度场数值模拟研究[J]. 铸造技术, 2014(7): 1 575-1 577.
[21] 任飞飞, 张慧, 王伟宁, 等. 倒角结晶器铜板实际温度场数值仿真[J]. 钢铁, 2015, 50(4): 27-33.
[22] 宋磊, 郭赟, 曾和义. 板状燃料组件入口堵流事故下流场和温度场的瞬态数值计算[J]. 核动力工程, 2014(3): 6-10.
[23] 杨仁华. 基于ANSYS的制动盘瞬态热仿真分析[J]. 中国西部科技, 2015, 14(10): 88-91.
[24] 袁若浩. 基于ANSYS热分析炉均温场模拟及优化[D]. 杭州: 中国计量学院, 2015: 15-20.
[25] 张耀麒, 曾辉, 牟炳富, 等. 光纤陀螺光纤环温度瞬态效应的模拟仿真[J]. 半导体光电, 2014, 35(2): 197-200.
[26] 张玉, 李珠, 马钢. 玻化微珠保温混凝土墙体温度场数值模拟与分析[J]. 中国科技论文, 2015, 10(5): 528-531.
[27] 赵连风, 易丹青, 刘欢, 等. M42高速钢/X32弹簧钢电子束焊接温度场的数值模拟与实验研究[J]. 粉末冶金材料科学与工程, 2015, 20(4): 513-521.
[28] 周厚军, 陈秀敏, 杨斌, 等. 氧化铝真空碳热还原炉瞬态温度场模拟计算[J]. 真空科学与技术学报, 2012, 32(10): 896-901.
[29] BOLTON E W, FIROOZABADI A. Numerical modeling of temperature and species distributions in hydrocarbon reservoirs[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(1): 18-31.
[30] CAO Tao-feng, MU Yu-tong, DING Jing, et al. Modeling the temperature distribution and performance of a PEM fuel cell with thermal contact resistance[J]. International Journal of Heat and Mass Transfer, 2015, 87: 544-556.
[31] GUO Hang, WANG Mao-hai, LIU Jia-xing, et al. Tempera-ture distribution on anodic surface of membrane electrode assembly in proton exchange membrane fuel cell with interdigitated flow bed[J]. Journal of Power Sources, 2015, 273: 775-783.
[32] LOZANO D E, MARTINEZ-CAZARES G, MERCADO-SOLIS R D, et al. Estimation of transient temperature distribution during quenching, via a parabolic model[J]. Journal of Materials Processing Technology, 2015, 61(2): 107-114.
[33] TAKAGI Y, HONMA S, WAKAMATSU H, et al. Comparison of brain temperature distribution in mathematical and solid models of head thermal characteristics[J]. Electrical Engineering in Japan, 2015, 193(2): 58-68.
[34] ZHUO Zi-han, WANG Jie, ZHAI Wei-ming, et al. Numerical modeling and simulation of temperature distribution uncertainty subject to ferromagnetic thermoseeds hyperthermia[J]. Chinese Science Bulletin, 2014, 59(12): 1 317-1 325.
[35] 杨光, 吴静怡. 三维动态混合对流过程中的温度均匀性分析及实验验证[J]. 工程热物理学报, 2014(4): 730-734.