Abstract
In this work, the enzymatic hydrolysis of bovine bone collagen was studied by pre-purified bone-specific collagenase (BSC). As evaluated in terms of degree of hydrolysis. The enzymatic hydrolysis process was studied through single factor and quadratic general rotary unitized design experiments. The results showed that the optimum hydrolysis conditions were as follows: reaction temperature 46 ℃, the amount of bovine bone collagen 5.14 g/100 mL, the amount of BSC enzyme 0.42 g/100 mL, reaction time 6 h, pH 6.5. Under these conditions, the degree of hydrolysis value was 34.98%. The structural properties of bovine bone collagen and its hydrolysate were characterized by ultraviolet, fluorescence, fourier transform infrared spectroscopy, and differential scanning calorimetry. The UV analysis showed that the BSC degradation enzyme damage the bone collagen three helix structure, a large number of free amino acid; FS analysis showed that the collagen molecular surface C═O, CONH2 and COOH gradually increased, collagen peptide chromophore distribution also changes; FT-IR analysis showed that the degrada-tion of collagen from bovine bone collagen peptide after the the peptide chain of —NH+2— repulsion effect gradually weakened, mainly in the beta angle; SEM showed that the enzyme damaged the surface of bovine collagen molecular structure, and made it loose.
Publication Date
7-28-2017
First Page
40
Last Page
46
DOI
10.13652/j.issn.1003-5788.2017.07.009
Recommended Citation
Lili, LIU; Dan, LI; Chenliu, YANG; Yuanyuan, MENG; and Xiaoning, DAI
(2017)
"Optimization of Enzymatic hydrolysis process and analysis of structural properties on bovine bone crude collagen,"
Food and Machinery: Vol. 33:
Iss.
7, Article 9.
DOI: 10.13652/j.issn.1003-5788.2017.07.009
Available at:
https://www.ifoodmm.cn/journal/vol33/iss7/9
References
[1] 孙蓓, 王龙刚. 畜禽骨的综合利用现状及发展前景[J]. 中国调味品, 2011, 36(4): 1-4.
[2] 刁静静, 孔保华, 陈洪生. 骨蛋白水解物的功能特性及抗氧化性的研究进展[J]. 肉类研究, 2007(6): 26-29.
[3] BANERJEE P, MEHTA A, SHANTHI C. Investigation into the cyto-protective and wound healing properties of cryptic peptides from bovine Achilles tendon collagen[J]. Chemico-Biological Interactions, 2014, 211(229): 1-10.
[4] GMEZGUILLN M C, GIMNEZ B, LPEZCABALLERO M E, et al. Functional and bioactive properties of collagen and gelatin from alternative sources: A review[J]. Food Hydrocolloids, 2011, 25(8): 1 813-1 827.
[5] TOOPCHAM T, MES J J, WICHERS H J, et al. Bioavailabili-ty of angiotensin I-converting enzyme (ACE) inhibitory peptides derived from Virgibacillus halodenitrificans SK1-3-7 proteinases hydrolyzed tilapia muscle proteins[J]. Food Chemistry, 2017, 220: 190-197.
[6] 张宇, 邬应龙, 黄祎萌. 单菌和双菌固态发酵猪骨素的研究[J]. 食品工业科技, 2013, 34(22): 179-182.
[7] 彭慧莉. 酶解和乳酸菌发酵猪骨的工艺研究[D]. 成都: 西华大学, 2013: 100-120.
[8] 蔡丽华. 牛骨酶解制备血管紧张素转换酶抑制肽的研究[D]. 武汉: 华中农业大学, 2010: 112-135.
[9] 赵妍嫣, 胡林林, 方芳, 等. 骨胶原蛋白的酶解工艺条件[J]. 食品科学, 2010, 31(22): 153-155.
[10] ZHANG Yu-hao, MA Liang, CAI Lu-yun, et al. Effect of combined ultrasonic and alkali pretreatment on enzymatic preparation of angiotensin converting enzyme (ACE) inhibitory peptides from native collagenous materials[J]. Ultrasonics Sonochemistry, 2017, 36: 88-94.
[11] 刘丽莉, 马美湖, 杨协力. 牛骨Ⅰ型胶原蛋白提取及结构表征[J]. 食品科学, 2010, 31(2): 87-91.
[12] 肖岚, 李诚, 付刚, 等. 5种蛋白酶对猪皮胶原蛋白水解效果的比较研究[J]. 食品研究与开发, 2015, 36(17): 10-14.
[13] 李燕, 徐静, 吴祥庭, 等. 卤鸡腿废弃液酶解工艺优化及其抗氧化活性研究[J]. 食品与机械, 2013, 29(6): 153-157.
[14] 张小燕. 胶原蛋白肽生物功能材料的研究与开发[D]. 西安: 西北工业大学, 2006: 80-96.
[15] 吴雷, 郑娟, 刘文涛, 等. 鸡关节软骨II型胶原蛋白结构及性能表征[J]. 食品与发酵工业, 2016, 42(11): 86-90.
[16] 朱瀛, 赵改名, 柳艳霞, 等. 中性蛋白酶水解鸡骨泥制备短肽工艺优化[J]. 农业工程学报, 2016, 32(12): 309-314.
[17] 石岭, 赵利, 袁美兰, 等. 响应面法优化碱性蛋白酶酶解草鱼蛋白质[J]. 食品科学, 2014, 35(4): 26-29.
[18] 张丽红, 谢三都, 徐芳, 等. 紫苏叶多糖活性炭脱色工艺优化[J]. 食品与机械, 2015, 31(3): 224-230.
[19] 杨露, 丁利君, 蓝德安. 马面鱼骨胶原多肽的理化特性及其抗氧化活性[J]. 食品科学, 2013, 34(11): 109-112.
[20] 琚海燕, 刘新华, 但卫华, 等. 牛跟腱Ⅰ型胶原纤维的微观结构与理化性能分析[J]. 功能材料, 2015(15): 15 031-15 034.