Abstract
Rice with cadmium content of 0.977 8 mg/kg was studied as the main material, its cadmium removal rate was regard as the basic measuring index. The process parameters of reducing techniques for cadmium-tainted rice were optimized by single factor test and Box-behnken response surface design. The investigation were focused on the effects of temperature, time, mesh number of rice, solid-liquid ratio, and inoculation amount. The optimal parameters were found as follows: mesh number of rice 40, inoculation amount 3, solid-liquid ratio 15, treated at 37 ℃ for 21 h. Under this optimum conditions, the cadmium removal rate was 89.98%, which was similar to the predicted value of 89.736 2%.
Publication Date
8-28-2017
First Page
44
Last Page
49,171
DOI
10.13652/j.issn.1003-5788.2017.08.011
Recommended Citation
Yao, CHEN; Luyan, LIAO; and Weiguo, WU
(2017)
"Optimization of the technology for reducing cadmium in rice by mixed fermentation,"
Food and Machinery: Vol. 33:
Iss.
8, Article 11.
DOI: 10.13652/j.issn.1003-5788.2017.08.011
Available at:
https://www.ifoodmm.cn/journal/vol33/iss8/11
References
[1] 郑陶, 李廷轩, 张锡洲, 等. 水稻镉高积累品种对镉的富集特性[J]. 中国农业科学, 2013, 46(7): 1 492-1 500.
[2] 魏益民, 魏帅, 郭波莉, 等. 含镉稻米的分布及治理技术概述[J]. 食品科学技术学报, 2013, 31(2): 1-6.
[3] 田阳. 稻米加工技术对产品镉含量的影响[D]. 北京: 中国农业科学院, 2013: 11-14.
[4] 刘晶, 任佳丽, 林亲录, 等. 大米浸泡过程中重金属迁移规律研究[J]. 食品与机械, 2013, 29(5): 66-67.
[5] 彭志兵, 莫逆, 杨学文. 乳酸浸提去除大米粉中镉的研究[J]. 粮食科技与经济, 2016, 41(5): 39-42.
[6] 许艳霞, 倪小英, 袁毅, 等. 溶剂浸提技术消减稻米中镉含量[J]. 粮食科技与经济, 2015, 40(5): 36-39.
[7] 张丽娜, 解万翠, 杨锡洪, 等. 微生物法脱除重金属技术的研究进展[J]. 食品工业科技, 2015(24): 356-359.
[8] 周显青, 李亚军, 张玉荣. 不同微生物发酵对大米理化特性及米粉食味品质的影响[J]. 河南工业大学学报: 自然科学版, 2010, 31(1): 4-8.
[9] HALTTUNEN T, SALMINEN S, TAHVONEN R. Rapid removal of lead and cadmium from water by specific lactic acid bacteria[J]. International Journal of Food Microbiology, 2007, 114(1): 30-35.
[10] 傅亚平, 廖卢艳, 刘阳, 等. 乳酸菌发酵技术脱除大米粉中镉的工艺优化[J]. 农业工程学报, 2015, 31(6): 319-326.
[11] BADER J, MASTGERLACH E, POPOVIC M K, et al. Relevance of microbial coculture fermentations in biotechnology[J]. Journal of Applied Microbiology, 2010, 109(2): 371-87.
[12] PETTIT R K. Mixed fermentation for natural product drug discovery[J]. Applied Microbiology and Biotechnology, 2009, 83(1): 19-25.
[13] 徐德阳, 王莉莉, 杜春梅. 微生物共培养技术的研究进展[J]. 微生物学报, 2015, 55(9): 1 089-1 096.
[14] 雷群英. 大米中镉的微生物法脱除及其应用品质研究[D]. 无锡: 江南大学, 2015: 11-19.
[15] 王锋, 鲁战会, 薛文通, 等. 浸泡发酵大米成分的研究[J]. 粮食与饲料工业, 2003(1): 11-14.
[16] 国家卫生计生委. GB 5009.15—2014 食品中镉的测定[S]. 北京: 中国标准出版社, 2014.
[17] 赵德安. 混合发酵与纯种发酵[J]. 中国调味品, 2005(3): 3-8.
[18] BERTRAND S, BOHNI N, SCHNEE S, et al. Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery[J]. Biotechnology Advances, 2014, 32(6): 1 180.
[19] 傅亚平, 吴卫国, 王巨涛. 乳酸菌发酵脱除大米粉中重金属镉的机理[J]. 食品与发酵工业, 2016, 42(3): 104-108.
[20] 曾晓希. 抗重金属微生物的筛选及其抗镉机理和镉吸附特性研究[D]. 长沙: 中南大学, 2010: 61-69.
[21] 冯镇, 张兰威. 乳酸菌发生自溶的影响因素研究[J]. 中国乳品工业, 2003, 31(3): 7-9.
[22] 王婷婷. 微生物对重金属的吸附作用及其影响因素[J]. 生物学教学, 2012, 37(11): 9-10.
[23] 张海欧, 周维芝, 马玉洪, 等. 微生物胞外聚合物对重金属镉的解毒作用及红外光谱分析[J]. 光谱学与光谱分析, 2013, 33(11): 3 041-3 043.
[24] 杨彦平. 三株嗜酸性微生物表面质子及重金属吸附行为研究[D]. 长沙: 中南大学, 2013: 31-77.
[25] KINOSHITA H, SOHMA Y, OHTAKE F, et al. Biosorption of heavy metals by lactic acid bacteria and identification of mercury binding protein[J]. Research in Microbiology, 2013, 164(7): 701.
[26] GHORBANI F, YOUNESI H, GHASEMPOURI S M, et al. Application of response surface methodology for optimization of cadmium biosorption in an aqueous solution by Saccharomyces cerevisiae[J]. Chemical Engineering Journal, 2008, 145(2): 267-275.