Abstract
Olive pomace IDF were physical modified by high pressure homogenization (HPH) and colloid mill (CM) in this study. Moreover, the micromorphology, particle size distribution, functional groups, crystal structure and physico-chemical properties of IDF before and after the modification were analyzed. HPH group had looser morphology, more cavities and cracks, average particle size of 66.97 μm. CM group had looser morphology, more fracture, average particle size of 79.52 μm. HPH and CM modification didn’t affect IDF’s functional groups, crystal structure or crystallinity. HPH and CM groups similarly appeared characteristics absorption peaks of sugars similarly, both had celluloseⅠcrystal structure. Compared with unmodified IDF, the water holding capacity,swelling capacity and oil holding capacity of HPH group were increased by 31.70%, 78.87% and 38.92%; the Cd2+ adsorption capacity were increased by 7.53%; however, the NO-2 adsorption capacity showed no increase. Additionally, the water holding and swelling capacities, and oil holding capacity of CM group were increased by 19.93%, 47.94% and 3297%, and the NO-2 adsorption capacity were increased by 820%; however, the Cd2+ adsorption capacity didn’t increase.
Publication Date
8-28-2017
First Page
10
Last Page
13,18
DOI
10.13652/j.issn.1003-5788.2017.08.003
Recommended Citation
Shasha, DING; Lixin, HUANG; Caihong, ZHANG; Pujun, XIE; Yejun, DENG; and Xiaojie, WANG
(2017)
"Effect of high pressure homogenization and colloid mill modification on the physicochemical properties of insoluble dietary fiber from olive pomace,"
Food and Machinery: Vol. 33:
Iss.
8, Article 3.
DOI: 10.13652/j.issn.1003-5788.2017.08.003
Available at:
https://www.ifoodmm.cn/journal/vol33/iss8/3
References
[1] MUDGIL D, BARAK S. Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: A review[J]. International Journal of Biological Macromole-cules, 2013, 61: 1-6.
[2] 王俊丽, 臧明夏. 膳食纤维改性研究进展[J]. 食品研究与开发, 2012, 33(5): 225-228.
[3] 李雁, 熊明洲, 尹丛林, 等. 红薯渣不溶性膳食纤维超高压改性[J]. 农业工程学报, 2012, 28(19): 270-278.
[4] 王强, 赵欣. 不同膳食纤维改性技术研究进展[J]. 食品工业科技, 2013, 34(9): 392-395.
[5] 杨明华, 太周伟, 俞政全, 等. 膳食纤维改性技术研究进展[J]. 食品研究与开发, 2016, 37(10): 207-210.
[6] 杨远通, 钟海雁, 潘曼, 等. 超微粉碎对猕猴桃渣膳食纤维功能性质的影响[J]. 食品与机械, 2011, 27(1): 11-14, 18.
[7] 王文侠, 张慧君, 宋春丽, 等. 纤维素酶法制备高活性大豆膳食纤维工艺的研究[J]. 食品与机械, 2010, 26(2): 118-122.
[8] 张晶, 丁芳, 邹晴晴, 等. 高压均质对大米蛋白功能特性及物化特性的影响[J]. 食品与机械, 2016, 32(6): 9-12.
[9] 黄素雅, 何亚雯, 钱炳俊, 等. 高静压和高压均质对豆渣水不溶性膳食纤维改性及其功能的影响[J]. 食品科学, 2015, 36(15): 81-85.
[10] 陶姝颖, 郭晓晖, 令博, 等. 改性葡萄皮渣膳食纤维的理化性质和结构[J]. 食品科学, 2012, 33(15): 171-177.
[11] 张根生, 葛英亮, 聂志强, 等. 马铃薯渣不溶性膳食纤维超微粉碎改性工艺优化[J]. 食品与机械, 2015, 31(6): 186-189.
[12] KOLOKASSIDOU K, SZYMCZAK M, WOLF M, et al. Hydrophilic olive cake extracts: Characterization by physicochemi-cal properties and Cu (Ⅱ) complexation [J]. Journal of Hazardous Materials, 2009, 164(2/3): 442-447.
[13] 丁莎莎, 黄立新, 张彩虹, 等. 油橄榄果渣水不溶性膳食纤维结构表征及体外吸附性能研究[J]. 食品工业科技, 2017, 38(3): 108-112.
[14] 马晓娟, 黄六莲, 陈礼辉, 等. 纤维素结晶度的测定方法[J]. 造纸科学与技术, 2012, 31(2): 75-78.
[15] 丁莎莎, 黄立新, 张彩虹, 等. 油橄榄果渣膳食纤维碱法提取工艺优化及其理化性质研究[J]. 林产化学与工业, 2017, 37(1): 116-122.
[16] 徐灵芝, 黄亮, 李璐, 等. 雷竹笋渣及其膳食纤维的物化特性分析[J]. 中国酿造, 2016, 35(4): 122-126.
[17] 胡小军, 梁洁贞, 曾玉带. 水浮莲膳食纤维对Pb2+、Cd2+、Cr2+吸附作用的研究[J]. 食品工业科技, 2007, 28(11): 103-105.
[18] PARK K H, LEE K Y, LEE H G. Chemical composition and physicochemical properties of barley dietary fiber by chemical modification[J]. International Journal of Biological Macromolecules, 2016, 60(6): 360-365.
[19] 涂宗财, 段邓乐, 王辉, 等. 豆渣膳食纤维的结构表征及其抗氧化性研究[J]. 中国粮油学报, 2016(6): 22-26.
[20] 张剑韵, 包立军, 梁进, 等. 桑叶多糖的分离及红外光谱和气相色谱分析[J]. 桑叶科学, 2007, 33(4): 549-552.
[21] 马光路, 吕建波, 曹青. 玉米秸秆中木质素、半纤维素和纤维素的组分分离研究[J]. 中国农业科技导报, 2015, 17(6): 70-79.
[22] 申瑞玲, 王英. 膳食纤维的改性及其对功能特性的影响[J]. 农产品加工, 2009(3): 17-20.