•  
  •  
 

Authors

LUO Lei, College of Food & Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China; Food Materials Engineering Technology Research Center of Henan Province, Luoyang, Henan 471023, China
WANG Yaqi, College of Food & Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China; Food Materials Engineering Technology Research Center of Henan Province, Luoyang, Henan 471023, China
MA Liping, College of Food & Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China; Food Materials Engineering Technology Research Center of Henan Province, Luoyang, Henan 471023, China
ZHU Wenxue, College of Food & Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China; Food Materials Engineering Technology Research Center of Henan Province, Luoyang, Henan 471023, China
ZHANG Kuan, College of Food & Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China; Food Materials Engineering Technology Research Center of Henan Province, Luoyang, Henan 471023, China
JI Qinghua, College of Food & Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China; Food Materials Engineering Technology Research Center of Henan Province, Luoyang, Henan 471023, China
MA Yongzhe, College of Food & Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China; Food Materials Engineering Technology Research Center of Henan Province, Luoyang, Henan 471023, China

Abstract

Superfine grinding-assisted enzymatic extraction of soluble dietary fiber from Phaseolus Radiatus hull were studied, and the extraction conditions were optimized by two general rotary combination design. Then the properties were studied. The results showed that the superfine grinding could significantly improve the extraction rate of soluble dietary fiber of Phaseolus radiatus hull, when the particle size was 25~38 μm, and the enzymatic extraction of soluble dietary fiber were: ratio of solvent-to-solid 331 (mL/g), enzyme solution temperature, 60 ℃, ratio of enzyme-substrate 190 U/g, the enzymolysis time 2 h. Under this conditions, the yield of soluble dietary fiber reached 14.02%, the water holding capacity was 389%, the oil holding capacity was 142%, the expansion force was 2.67 mL/g, and the adsorption rate of sodium cholate was 30.29%.

Publication Date

8-28-2017

First Page

144

Last Page

149

DOI

10.13652/j.issn.1003-5788.2017.08.032

References

[1] 邓志汇, 王娟. 绿豆皮与绿豆仁的营养成分分析及对比[J]. 现代食品科技, 2010(6): 656-659.
[2] 刘博, 曾琳娜, 林亲录, 等. 可溶性膳食纤维生理功能研究进展[J]. 粮食与油脂, 2013(9): 42-45.
[3] 许晖. 用挤压法提高米糠中可溶性膳食纤维含量的研究[J]. 食品与机械, 1999(6): 19-20.
[4] 刘秀凤, 常学东, 蔡金星, 等. 芦笋老茎中可溶性膳食纤维提取工艺优化[J]. 食品与机械, 2009, 25(6): 96-98, 180.
[5] 王磊, 袁芳, 向俊, 等. 响应面法优化高压均质提取椪柑渣中可溶性膳食纤维及抗氧化活性研究[J]. 中国食品学报, 2015, 15(5): 82-89.
[6] 屈浩亮, 顾小红, 汤坚, 等. 癞葡萄渣可溶性膳食纤维提取工艺的研究及其单糖组分分析[J]. 食品与机械, 2008, 24(4): 73-78.
[7] 李梁, 聂成玲, 薛蓓, 等. 响应面法优化酶辅助提取苹果梨渣中可溶性膳食纤维工艺及品质分析[J]. 中国食品添加剂, 2016(12): 156-163.
[8] 王跃, 李梦琴. 超微粉碎对小麦麸皮物理性质的影响[J]. 现代食品科技, 2011, 27(3): 271-274.
[9] 陈小举, 吴学凤, 姜绍通, 等. 响应面法优化半纤维素酶提取梨渣中可溶性膳食纤维工艺[J]. 食品科学, 2015(6): 18-23.
[10] 郦金龙, 滕超, 查沛娜, 等. 酶水解制备玉米芯喷爆渣可溶性膳食纤维[J]. 中国食品学报, 2016(6): 105-111.
[11] 郑慧, 陈希平, 尤祯丹, 等. 蜂花粉可溶性膳食纤维酶法提取工艺优化及其理化分析[J]. 食品与机械, 2016, 32(12): 184-188.
[12] 谢怡斐, 田少君, 马燕, 等. 超微粉碎对豆渣功能性质的影响[J]. 食品与机械, 2014, 30(2): 7-11.
[13] WANG Lei, XU Hong-gao, YUAN Fang, et al. Preparation and physicochemical properties of soluble dietary fiber from orange peel assisted by steam explosion and dilute acid soaking[J]. Food Chemistry, 2015, 185(11): 90-98.
[14] 张建民. 车前草可溶性膳食纤维的制备及其活性研究[D]. 南昌: 南昌大学, 2007: 69-71.
[15] 周小理, 黄琳, 周一鸣. 苦荞水溶性蛋白体外吸附胆酸盐能力的研究[J]. 食品科学, 2011, 32(23): 77-81.
[16] 于滨, 和法涛, 葛邦国, 等. 超微粉碎对苦瓜渣理化性质与体外降糖活性的影响[J]. 农业机械学报, 2014(2): 233-238.
[17] 张相伦, 吴大伟, 陆鹏, 等. 普通和超微粉碎对银杏叶黄酮和萜内酯释放规律的影响研究[J]. 粮食与饲料工业, 2014(6): 45-47, 52.
[18] 齐军茹, 杨晓泉, 廖劲松, 等. 可溶性大豆多糖的提取对功能性的影响研究[J]. 中国食品添加剂, 2010(4): 165-168.
[19] 张荣, 任清, 罗宇. 小米可溶性膳食纤维提取及其理化性质分析[J]. 食品科学, 2014, 35(2): 69-74.
[20] 赵梅. 枣渣膳食纤维酶法改性工艺及相关性质研究[D]. 无锡: 江南大学, 2014: 24-25.
[21] 李梦琴, 王跃, 徐艳艳, 等. 小麦麸皮超高压处理条件优化及SEM表征[J]. 中国粮油学报, 2011, 26(9): 14-19.
[22] 苗敬芝, 赵永珍, 董玉玮, 等. 花生粕中可溶性膳食纤维功能性研究[J]. 农业机械, 2011(8): 153-155.
[23] 鞠健, 廖李, 乔宇, 等. 山药皮可溶性膳食纤维的提取及物化特性分析和应用[J]. 食品科技, 2016(9): 216-220.
[24] 徐苗均. 小麦麸皮可溶性膳食纤维的制备及其性质研究[D]. 合肥: 合肥工业大学, 2012: 49-51.
[25] DRZIKOVA B, DONGOWSKI G, GEBHARDT E. The composition of dietary fibre-rich extrudates from oat affects bile acid binding and fermentation in vitro[J]. Food Chemistry, 2005, 90(1/2): 181-192.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.