•  
  •  
 

Authors

QUAN Qinguo, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, Guangdong 518108, China
MO Rijian, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, Guangdong 518108, China
TAN Li, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, Guangdong 518108, China
YAN Xiemin, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, Guangdong 518108, China
SU Tiantian, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, Guangdong 518108, China
ZHOU Chunxia, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, Guangdong 518108, China
HONG Pengzhi, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, Guangdong 518108, China
LI Chengyong, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, Guangdong 518108, China

Abstract

Vibrio parahaeomolyticus, a natural inhabitant in estuarine marine water has been frequently isolated from seafood, and causes huge economic losses. It has been recognized as the leading causative agent for seafood borne illness all over the world. Numerous physical, chemical, and biological intervention methods for reducing V. parahaeomolyticus in seafood products have been investigated and practiced. Each intervention method has distinct advantages and disadvantages depending on the processing needs and consumer preference. This review provides a comprehensive overview of various intervention strategies for reducing V. parahaeomolyticus in seafood so as to give a reference to the application of related technology and subsequent research.

Publication Date

8-28-2017

First Page

198

Last Page

203

DOI

10.13652/j.issn.1003-5788.2017.08.043

References

[1] LEE Ching-chang, JIANG Ling-ying, KUO Yi-ling, et al. Characteristics of nonylphenol and bisphenol A accumulation by fish and implications for ecological and human health[J]. Science of The Total Environment, 2015, 502: 417-425.
[2] 戴宏杰, 孙玉林, 冯梓欣, 等. 雌性虎斑乌贼缠卵腺营养成分分析与评价[J]. 食品科学, 2016, 37(14): 97-103.
[3] 卫昱君, 王紫婷, 徐瑗聪, 等. 致病性大肠杆菌现状分析及检测技术研究进展[J]. 生物技术通报, 2016, 32(11): 80-92.
[4] FELDHUSEN F. The role of seafood in bacterial foodborne diseases[J]. Microbes and Infection, 2000, 2(13): 1 651-1 660.
[5] DRAKE S L, DEPAOLA A, JAYKUS L A. An overview of Vibrio vulnificus and Vibrio parahaemolyticus[J]. Comprehensive Reviews in Food Science and Food Safety, 2007, 6(4): 120-144.
[6] ZAREI M, BORUJENI M P, JAMNEJAD A, et al. Seasonal prevalence of Vibrio species in retail shrimps with an emphasis on Vibrio parahaemolyticus[J]. Food Control, 2012, 25(1): 107-109.
[7] 刘代新, 宁喜斌, 张继伦. 响应面分析法优化副溶血性弧菌生长条件[J]. 微生物学通报, 2008, 35(2): 306-310.
[8] ESTEVE C. Numerical taxonomy of Aeromonadaceae and Vibrionaceae associated with reared fish and surrounding fresh and brackish water[J]. Systematic and Applied Microbiology, 1995, 18(3): 391-402.
[9] 茆丹, 陈万义, 周秀娟, 等. 不同来源副溶血弧菌分离株的遗传相关性分析[J]. 中国食品学报, 2015(8): 203-210.
[10] ZHANG Jun-yuan, MEI Lei-lei, ZHU Ming, et al. Quantita-tive inspection and analysis of Vibrio parahaemolyticus contamination in 301 seafoods[J]. Chin. J. Health Lab. Technol, 2007, 17(3): 509-510.
[11] ZIMMERMAN A M, DEPAOLA A, BOWERS J C, et al. Variability of total and pathogenic Vibrio parahaemolyticus densities in northern Gulf of Mexico water and oysters[J]. Applied and Environmental Microbiology, 2007, 73(23): 7 589-7 596.
[12] DAVIES A R, CAPELL C, JEHANNO D, et al. Incidence of foodborne pathogens on European fish[J]. Food Control, 2001, 12(2): 67-71.
[13] HARA-KUDO Y, SUGIYAMA K, NISHIBUCHI M, et al. Prevalence of pandemic thermostable direct hemolysin-producing Vibrio parahaemolyticus O3: K6 in seafood and the coastal environment in Japan[J]. Applied and Environmental Microbiology, 2003, 69(7): 3 883-3 891.
[14] KIRS M, DEPAOLA A, FYFE R, et al. A survey of oysters (Crassostrea gigas) in New Zealand for Vibrio parahaemolyticus and Vibrio vulnificus[J]. International Journal of Food Microbiology, 2011, 147(2): 149-153.
[15] DI PINTO A, CICCARESE G, DE CORATO R, et al. Detection of pathogenic Vibrio parahaemolyticus in southern Italian shellfish[J]. Food Control, 2008, 19(11): 1 037-1 041.
[16] SU Yi-cheng, LIU Cheng-chu. Vibrio parahaemolyticus: a concern of seafood safety[J]. Food Microbiology, 2007, 24(6): 549-558.
[17] JBORN A, OLSSON J C, WESTERDAHL A, et al. Colonization in the fish intestinal tract and production of inhibitory substances in intestinal mucus and faecal extracts by Carnobacterium sp. strain K1[J]. Journal of Fish Diseases, 1997, 20(5): 383-392.
[18] LOPEZ-JOVEN C, RUIZ-ZARZUELA I, DE BLAS I, et al. Persistence of sucrose fermenting and nonfermenting vibrios in tissues of Manila clam species, Ruditapes philippinarum, depurated in seawater at two different temperatures[J]. Food Microbiology, 2011, 28(5): 951-956.
[19] HAN N, MIZAN M F R, JAHID I K, et al. Biofilm formation by Vibrio parahaemolyticus on food and food contact surfaces increases with rise in temperature[J]. Food Control, 2016, 70: 161-166.
[20] ANDREWS L S, PARK D L, CHEN Y P. Low temperature pasteurization to reduce the risk of vibrio infections from raw shell-stock oysters[J]. Food Additives & Contaminants, 2000, 17(9): 787-791.
[21] 孙文烁, 靳梦曈, 王敬敬, 等. 运用Real-time PCR建立即食虾中副溶血性弧菌分子预测模型[J]. 现代食品科技, 2014, 30(7): 142-148.
[22] CHO T J, KIM N H, KIM S A, et al. Survival of foodborne pathogens (Escherichia coli O157: H7, Salmonella Typhimurium, Staphylococcus aureus, Listeria monocytogenes, and Vibrio parahaemolyticus) in raw ready-to-eat crab marinated in soy sauce[J]. International Journal of Food Microbiology, 2016, 238: 50-55.
[23] DICAPRIO E, PHANTKANKUM N, CULBERTON D, et al. Inactivation of human norovirus and Tulane virus in simple media and fresh whole strawberries by ionizing radiation[J]. International Journal of Food Microbiology, 2016, 232: 43-51.
[24] ANDREWS L, JAHNCKE M, MALLIKARJUNAN K. Low dose gamma irradiation to reduce pathogenic vibrios in live oysters (Crassostrea virginica)[J]. Journal of Aquatic Food Product Technology, 2003, 12(3): 71-82.
[25] LAI Wen-bin, WONG Hin-chung. Influence of combinations of sublethal stresses on the control of Vibrio parahaemolyticus and its cellular oxidative response[J]. Food Control, 2013, 33(1): 186-192.
[26] 王瑞, 傅玲琳, 叶立斌, 等. 超高压对副溶血弧菌细胞壁膜损伤的研究[J]. 中国食品学报, 2012, 12(9): 50-56.
[27] DONS F, ANNUNZIATA M, FERRARI G. Microbial inactivation by high pressure homogenization: Effect of the disruption valve geometry[J]. Journal of Food Engineering, 2013, 115(3): 362-370.
[28] YE Mu, HUANG Yao-xin, CHEN Hai-qiang. Inactivation of Vibrio parahaemolyticus and Vibrio vulnificus in oysters by high-hydrostatic pressure and mild heat[J]. Food Microbiology, 2012, 32(1): 179-184.
[29] MOOTIAN G K, FLIMLIN G E, KARWE M V, et al. Inactivation of Vibrio parahaemolyticus in hard clams (Mercanaria mercanaria) by high hydrostatic pressure (HHP) and the effect of HHP on the physical characteristics of hard clam meat[J]. Journal of Food Science, 2013, 78(2): E251-E257.
[30] PHUVASATE S, SU Yi-cheng. Efficacy of low-temperature high hydrostatic pressure processing in inactivating Vibrio parahaemolyticus in culture suspension and oyster homogenate[J]. International Journal of Food Microbiology, 2015, 196: 11-15.
[31] DU Su-ping, ZHANG Zhao-huan, XIAO Li-li, et al. Acidic electrolyzed water as a novel transmitting medium for high hydrostatic pressure reduction of bacterial loads on shelled fresh shrimp[J]. Frontiers in Microbiology, 2016, 7: 305.
[32] 张后成, 朱玉婵, 任占冬, 等. 中性氧化电解水对卷心菜的杀菌作用与机理[J]. 农业工程学报, 2013, 29(22): 277-283.
[33] LI Ji-bing, LIN Ting, LU Qin, et al. Changes in physicochemical properties and bactericidal efficiency of acidic electrolyzed water ice and available chlorine decay kinetics during storage[J]. LWT-Food Science and Technology, 2014, 59(1): 43-48.
[34] HAO Jian-xiong, QIU Shuang, LI Hui-ying, et al. Roles of hydroxyl radicals in electrolyzed oxidizing water (EOW) for the inactivation of Escherichia coli[J]. International Journal of Food Microbiology, 2012, 155(3): 99-104.
[35] AL-QADIRI H M, AL-HOLY M A, SHIROODI S G, et al. Effect of acidic electrolyzed water-induced bacterial inhibition and injury in live clam (Venerupis philippinarum) and mussel (Mytilus edulis)[J]. International Journal of Food Microbiology, 2016, 231: 48-53.
[36] FITZGERALD G A, CONWAY JR W S. Sanitation and Quality Control in the Fishery Industries[J]. American Journal of Public Health and the Nations Health, 1937, 27(11): 1 094-1 101.
[37] CHAIYAKOSA S, CHARERNJIRATRAGUL W, UMSAK-UL K, et al. Comparing the efficiency of chitosan with chlorine for reducing Vibrio parahaemolyticus in shrimp[J]. Food Control, 2007, 18(9): 1 031-1 035.
[38] 江俊康, 覃江纯, 许培培, 等. 大鼠吸入氯气肺组织基质金属蛋白酶-9表达变化[J]. 工业卫生与职业病, 2014, 40(6): 440-442.
[39] MELO A, MANSILHA C, TEIXEIRA M, et al. Occurrence of Trihalomethanes in Chlorinated Waters from Different Sources Used for Urban Supply[J]. Food Science and Technology, 2016, 4(4): 57-63.
[40] 王江勇, 王瑞旋, 苏友禄, 等. 方斑东风螺“急性死亡症”的病原病理研究[J]. 南方水产科学, 2013, 9(5): 93-99.
[41] KAUR S, SMITH D J, MORGAN M T. Chloroxyanion resi-due quantification in cantaloupes treated with chlorine dioxide gas[J]. Journal of Food Protection, 2015, 78(9): 1 708-1 718.
[42] 马玉琳, 谷娜, 池惠荣, 等. 复方二氧化氯对平菇褐斑病病原菌的杀菌效果及机理[J]. 北方园艺, 2015(3): 130-134.
[43] 彭珊珊, 钟瑞敏, 李琳. 食品添加剂[M]. 北京: 中国轻工业出版社, 2009: 42-45.
[44] STEATFORD M, NEBE-VON-CARON G, STEELS H, et al. Weak-acid preservatives: pH and proton movements in the yeast Saccharomyces cerevisiae[J]. International Journal of Food Microbiology, 2013, 161(3): 164-171.
[45] KAMADA N, CHEN G Y, INOHARA N, et al. Control of pathogens and pathobionts by the gut microbiota[J]. Nature Immunology, 2013, 14(7): 685-690.
[46] SHIRAZINEJAD A, ISMAIl N, BHAT R. Lactic acid as a potential decontaminant of selected foodborne pathogenic bacteria in shrimp (Penaeus merguiensis de Man)[J]. Foodborne Pathogens and Disease, 2010, 7(12): 1 531-1 536.
[47] TERZI G, GUCUKOGLU A. Effects of lactic acid and chitosan on the survival of V. parahaemolyticus in mussel samples[J]. Journal of Animal & Veterinary Advances, 2012, 9(6): 990-994.
[48] MEJLHOLM O, DEVITT T D, DALGAARD P. Effect of brine marination on survival and growth of spoilage and pathogenic bacteria during processing and subsequent storage of ready-to-eat shrimp (Pandalus borealis)[J]. International Journal of Food Microbiology, 2012, 157(1): 16-27.
[49] 姚亚明, 彭菁, 刘檀, 等. 壳聚糖处理结合纳米包装对黄花菜贮藏品质及生理的影响[J]. 食品科学, 2016, 37(20): 282-286.
[50] GEISBERGER G, GYENGE E B, HINGER D, et al. Chitosan-thioglycolic acid as a versatile antimicrobial agent[J]. Biomacromolecules, 2013, 14(4): 1 010-1 017.
[51] ABDELGAWAD A M, HUDSON S M, ROJAS O J. Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems[J]. Carbohydrate Polymers, 2014, 100: 166-178.
[52] WANG Wen, LI Min, FANG Wei-huan, et al. A predictive model for assessment of decontamination effects of lactic acid and chitosan used in combination on Vibrio parahaemolyticus in shrimps[J]. International Journal of Food Microbiology, 2013, 167(2): 124-130.
[53] LI L, LIN S L, DENG L, et al. Potential use of chitosan nanoparticles for oral delivery of DNA vaccine in black seabream Acanthopagrus schlegelii Bleeker to protect from Vibrio parahaemolyticus[J]. Journal of Fish Diseases, 2013, 36(12): 987-995.
[54] 高慧, 蒋晶, 孙亚芳, 等. 姜黄素副产品在果脯蜜饯生产中的防腐抑菌效果[J]. 食品与发酵工业, 2016(6): 112-116.
[55] BAKKALI F, AVERBECK S, AVERBECK D, et al. Biological effects of essential oils-a review[J]. Food and Chemical Toxicology, 2008, 46(2): 446-475.
[56] YOO M J, KIM Y S, SHIN D H. Antibacterial effects of natural essential oils from ginger and mustard against Vibrio species inoculated on sliced raw flatfish[J]. Food Science and Biotechnology, 2006, 15(3): 462-465.
[57] SHEN Xiao-ye, SU Yi-cheng. Application of grape seed extract in depuration for decontaminating Vibrio parahaemolyticus in Pacific oysters (Crassostrea gigas)[J]. Food Control, 2017, 73: 601-605.
[58] KHABJARI A, MISAGHI A, BASTI A A, et al. Effects of Zataria multiflora Boiss. Essential Oil, Nisin, pH and Temperature on Vibrio parahaemolyticus ATCC 43996 and Its Thermostable Direct Hemolysin Production[J]. Journal of Food Safety, 2013, 33(3): 340-347.
[59] 崔海英, 周慧, 张雪婧, 等. 天然植物型抑菌剂的配制及抗菌性能评价[J]. 食品与机械, 2015, 31(2): 196-198.
[60] 李钟美, 黄和. 高良姜提取物抑菌活性及稳定性研究[J]. 食品与机械, 2016, 32(2): 55-59.
[61] 张盛静, 赵小金, 宋晓玲, 等. 饲料添加益生菌对凡纳滨对虾肠道菌群, Toll 受体及溶菌酶基因表达及抗感染的影响[J]. 中国水产科学, 2016, 23(4): 846-854.
[62] WU Hui-juan, SUN Ling-bin, LI Chuan-biao, et al. Enhancement of the immune response and protection against Vibrio parahaemolyticus by indigenous probiotic Bacillus strains in mud crab (Scylla paramamosain)[J]. Fish & Shellfish Immunology, 2014, 41(2): 156-162.
[63] MAHMOUD B S M. The efficacy of grape seed extract, citric acid and lactic acid on the inactivation of Vibrio parahaemolyticus in shucked oysters[J]. Food Control, 2014, 41: 13-16.
[64] WU Hui-juan, SUN Ling-bin, LI Chuan-biao, et al. Enhancement of the immune response and protection against Vibrio parahaemolyticus by indigenous probiotic Bacillus strains in mud crab (Scylla paramamosain)[J]. Fish & Shellfish Immunology, 2014, 41(2): 156-162.
[65] 陈冬平, 张亚, 刘双清, 等. 裂解性噬菌体控制细菌和真菌的应用进展[J]. 菌物研究, 2016, 14(3): 180-186.
[66] MAHONY J, MCAULIFFE O, ROSS R P, et al. Bacteriophages as biocontrol agents of food pathogens[J]. Current Opinion in Biotechnology, 2011, 22(2): 157-163.
[67] GARCIA P, MARTINEZ B, OBESO J M, et al. Bacterioph-ages and their application in food safety[J]. Letters in Applied Microbiology, 2008, 47(6): 479-485.
[68] RONG Rong, LIN Hong, WANG Jing-xue, et al. Reductions of Vibrio parahaemolyticus in oysters after bacteriophage application during depuration[J]. Aquaculture, 2014, 418: 171-176.
[69] LOMEL-ORTEGA C O, MARTNEZ-DAZ S F. Phage therapy against Vibrio parahaemolyticus infection in the whiteleg shrimp (Litopenaeus vannamei) larvae[J]. Aquaculture, 2014, 434: 208-211.
[70] ALAGAPPAN K, KARUPPIAH V, DEIVASIGAMANI B. Protective effect of phages on experimental V. parahaemol-yticus infection and immune response in shrimp (Fabricius, 1798)[J]. Aquaculture, 2016, 453: 86-92.
[71] CHANG H J, HONG J, LEE N, et al. Growth inhibitory effect of bacteriophages isolated from western and southern coastal areas of Korea against Vibrio parahaemolyticus in Manila clams[J]. Applied Biological Chemistry, 2016, 59(3): 359-365.
[72] JUN J W, KIM H J, YUN S K, et al. Eating oysters without risk of vibriosis: application of a bacteriophage against Vibrio parahaemolyticus in oysters[J]. International Journal of Food Microbiology, 2014, 188: 31-35.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.