Abstract
This paper first describes the X-ray fluorescence analysis technology application. Secondly, the effects of different soil preparation conditions and detection conditions on the detection of X-ray fluorescence spectroscopy and the application of spectral analysis and model optimization are introduced. Finally, the development prospect of X-ray fluorescence spectrum detection technology is briefly discussed.
Publication Date
8-28-2017
First Page
210
Last Page
213
DOI
10.13652/j.issn.1003-5788.2017.08.045
Recommended Citation
Lei, MENG; Ping, HAN; Shifang, WANG; Dong, REN; and Jihua, WANG
(2017)
"Application progress of X-ray fluorescence spectroscopy in the detection of heavy metals in soil,"
Food and Machinery: Vol. 33:
Iss.
8, Article 45.
DOI: 10.13652/j.issn.1003-5788.2017.08.045
Available at:
https://www.ifoodmm.cn/journal/vol33/iss8/45
References
[1] 环境保护部和国土资源部发布全国土壤污染状况调查公报[J]. 油气田环境保护, 2014(3): 66.
[2] 杨梦昕, 付湘晋, 李忠海. 湘江流域重金属污染情况及其对食物链的影响[J]. 食品与机械, 2014, 30(5): 103-106.
[3] WANG Xiao-yu. Characteristic and environmental risk assessment of heavy metals in farmland soil of based on speciation analysis[J]. Informatics and Management Science, 2013, 204: 213-220.
[4] 王丽娟. 土壤重金属污染的危害及修复[J]. 现代农业, 2017(1): 73-75.
[5] 周斌, 钱园凤, 潘仪超. 土壤重金属检测方法研究进展[J]. 种子科技, 2016, 34(7): 25-26.
[6] WU Cheng-Mau, TSAI Hung-Teh, YANG Kai-Hsing, et al. How reliable is X-ray fluorescence (XRF) measurement for different metals in soil contamination?[J]. Environmental Forensics, 2012, 13(2): 110-121.
[7] HE Huan, TANG Bo, SUN Chen, et al. Preparation of hap-ten-specific monoclonal antibody for cadmium and its ELISA application to aqueous samples[J]. Frontiers of Environmental Science and Engineering in China, 2011, 5(3): 409-416.
[8] SHUKOR M Y, BAHAROM N A, MASDORN A, et al. The development of an inhibitive determination method for zinc using a serine protease[J]. Journal of Environmental Biology, 2009, 30(1): 17-22.
[9] 王纪华, 韩平, 陆安祥. 重金属快速测定方法与仪器研发应用[J]. 农产品质量与安全, 2012(1): 48-52.
[10] 吉昂. X射线荧光光谱三十年[J]. 岩矿测试, 2012, 31(3): 383-398.
[11] 张玉琴. 固定污染源排气中铬酸雾测定的主要影响因素分析[J]. 辽宁化工, 2010, 39(3): 336-337.
[12] 胡明情. XRF法检测土壤重金属的影响因素[J]. 环境监控与预警, 2016, 8(2): 23-24.
[13] RADU T, DIAMOND D. Comparison of soil pollution concentrations determined using AAS and portable XRF techniques[J]. Journal of Hazardous Materials, 2009, 171(1): 1 168-1 171.
[14] 陆安祥, 王纪华, 潘立刚. 便携式X射线荧光光谱测定土壤中Cr, Cu, Zn, Pb和As的研究[J]. 光谱学与光谱分析, 2010, 30(10): 2 848-2 852.
[15] SUBRAMANIAN V. Quantitative analysis of elements in sediments and soils by X-ray fluorescence: a discussion[J]. Clays & Clay Minerals, 1977, 25(2): 73-77.
[16] MEJA-PIA K G, HUERTA-DIAZ M A, GONZLEZ-YAJIMOVICH O. Calibration of handheld X-ray fluorescence (XRF) equipment for optimum determination of elemental concentrations in sediment samples[J]. Talanta, 2016, 161: 359-367.
[17] 刘江斌, 党亮, 殷桃刚. 粉末压片—X射线荧光光谱法测定土壤中的铜铅锌砷锑钴铬镍等重金属元素[J]. 分析测试技术与仪器, 2015, 21(1): 42-46.
[18] CHEN Zheng, WILLIAMS P N, ZHANG Hao. Rapid and nondestructive measurement of labile Mn, Cu, Zn, Pb and As in DGT by using field portable-XRF[J]. Environmental Sciences Processes & Impacts, 2013, 15(9): 1 768-1 774.
[19] 杨桂兰, 商照聪, 李良君. 基于均匀设计的土壤重金属PXRF检测方法优化研究[J]. 浙江农业学报, 2016, 28(12): 2 123-2 129.
[20] 喻杰, 洪旭, 马英杰. 改进X荧光光谱仪快速检测土壤中重金属(英文)[J]. 光谱学与光谱分析, 2016, 36(10): 3 429-3 433.
[21] ANJOS M J D, LOPES R T, JESUSE F O D, et al. Quantitative analysis of metals in soil using X-ray fluorescence[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2000, 55(7): 1 189-1 194.
[22] 黄秋鑫, 孙秀敏. 粉末标准曲线XRF法检测土壤中的重/类金属[J]. 环境科学与技术, 2014(9): 92-98.
[23] 吴晓玲. XRF分析土壤重金属元素含量的方法研究[D]. 成都: 成都理工大学, 2016: 28-43.
[24] NEWLAND D E. An introduction to random vibrations and spectral analysis[J]. Longman, 1984, 108(2): 140-147.
[25] AZAMI H, MOHAMMADI K, BOZORGTABAR B. An improved signal segmentation using moving average and savitzky-golay filter[J]. Journal of Signal & Information Processing, 2012, 3(1): 39-44.
[26] ALSBCRG B K, WOODWARD A M, WINSON M K, et a1. Wavelet denoising of infrared spectra[J]. Analyst, 1997, 122(7): 645-652.
[27] 李芳, 陆安祥, 王纪华. 基于支持向量机的X射线荧光光谱重金属检测模型的建立[J]. 分析仪器, 2016 (4): 68-73.
[28] MA X, ZHOU C, KEMP I J. Interpretation of wavelet analysis and its application in partial discharge detection[J]. IEEE Transactions on Dieleclrics and Electrical Insulation, 2002, 9(3): 446-457.
[29] 贾静. 能量色散X射线荧光分析软件及算法设计[D]. 西安: 西安电子科技大学, 2001: 23-37.
[30] 赵奉奎. 能量色散型X射线荧光光谱仪关键技术研究[D]. 南京: 东南大学, 2015: 17-44.
[31] 李芳. 基于小波变换的能量色散X射线荧光光谱建模方法研究[D]. 长春: 吉林大学, 2015.
[32] ZHANG Qing-xian, GE Liang-quan, GU Yi, et a1. Background estimation based on Fourier Transform in the energy-dispersive X-ray fluorescence analysis[J]. X-Ray Spectrometry, 2012, 41(2): 75-79.
[33] OMER M, NEGM H, KINJO R, et al. Analysis of SNIP Algorithm for Background Estimation in Spectra Measured with LaBr 3 : Ce Detectors[M]// Zero-Carbon Energy Kyoto 2012. Tokyo: Springer Japan, 2013: 245-252.
[34] 赵奉奎, 王爱民. 基于复数小波的X射线荧光光谱本底扣除法[J]. 冶金分析, 2015(7): 10-14.
[35] 陈霄龙. X射线荧光光谱法检测土壤中重金属的研究[D]. 长春: 长春理工大学, 2014: 17-21.
[36] 曹发明. XRF分析技术在土壤重金属检测中的应用研究[D]. 成都: 成都理工大学, 2014: 39-48.
[37] 王世芳, 韩平, 王纪华. X射线荧光光谱分析法在土壤重金属检测中的应用研究进展[J]. 食品安全质量检测学报, 2016, 7(11): 4 394-4 400.
[38] 黄启厅, 周炼清, 史舟. FPXRF—偏最小二乘法定量分析土壤中的铅含量[J]. 光谱学与光谱分析, 2009, 29(5): 1 434-1 438.
[39] 钱原铬. X射线荧光光谱定量分析土壤中重金属方法研究[D]. 吉林: 吉林大学, 2012: 21-27.
[40] KIRSANOV D, PANCHUK V, GOYDENKO A, et al. Improving precision of X-ray fluorescence analysis of lanthanide mixyures using PLSR[J]. Spectrochim Acta Part B, 2015, 113: 126-131.
[41] ZHANG Wei, ZHANG Yu-jun, CHEN Dong, et al. Quantitative analysis of overlapping X-ray fluorescence spectra for Ni, Cu, Zn in soil by orthogonal signal correction and partial least squares algorithm[J]. Advanced Materials Research, 2013, 705: 70-74.
[42] 胡锐, 赖万昌, 曾国强. 基于Android系统的X射线荧光光谱测量软件开发[J]. 核电子学与探测技术, 2014, 34(2): 243-248.
[43] 李哲. X射线探测器响应机制及应用建模技术[D]. 成都: 成都理工大学, 2013: 14-31.
[44] 钱原铬, 赵春江, 陆安祥. X射线荧光光谱检测技术及其研究进展[J]. 农业机械, 2011(23): 137-141.