Abstract
The volatile components in Anhua and other dark teas were analyzed by headspace solid phase microextraction (HS-SPME) combined with gas chromatography-time of flight mass spectrometry (GC-TOF MS). About 41 volatile compounds were analyzed qualitatively and quantitatively. A classification model and predict the authenticity obtained from variance analysis, principal component analysis (PCA) and partial least squares discriminate analysis (PLSDA). In addition, the 26 compounds significant impacting on the classification were screened out from Anhua dark tea. The straight forward classification trend of Anhua dark tea and other samples was visualized through projection score plots obtained by PCA. Effective classification and identification of Anhua dark tea, other origin dark tea and other kinds were carried out. The 14 important components for classification were found. The results showed that the developed GC-TOF MS method combined with chemometrics based on the volatile components in tea could be used to discriminate Anhua dark tea.
Publication Date
8-28-2017
First Page
34
Last Page
37,65
DOI
10.13652/j.issn.1003-5788.2017.08.009
Recommended Citation
Hongfei, YAN; Zhengguang, PENG; Rongjuan, LI; Lian, CHEN; Ling, WANGMei; Shanliang, FU; Hua, DAI; and Fan, ZHANG
(2017)
"Discrimination of Anhua dark tea by gas chromatography-time of flight mass spectrometry combined with chemometrics,"
Food and Machinery: Vol. 33:
Iss.
8, Article 9.
DOI: 10.13652/j.issn.1003-5788.2017.08.009
Available at:
https://www.ifoodmm.cn/journal/vol33/iss8/9
References
[1] 黄皓, 翁昆. 我国地理标志产品和茶叶产品保护的现状[J]. 中国茶叶加工, 2010(1): 8-11.
[2] 周宇清, 龚 贺, 邓放明. 湖南省茶叶安全现状与溯源系统建设研究[J]. 食品与机械, 2012, 28(3): 240-242
[3] 叶子弘, 言思敏, 崔海峰, 等. 茶叶原产地检测方法及其应用[J]. 中国计量学院学报, 2014, 25(3): 245-252.
[4] 马奕颜, 郭波莉, 魏益民, 等. 植物源性食品原产地溯源技术研究进展[J]. 食品科学, 2014, 35(5): 246-250.
[5] 林昕, 沙岭杰, 兰珊珊, 等. 在普洱茶产地溯源中化学计量学工具的应用研究[J]. 食品安全质量检测学报, 2015, 6(9): 3 646-3 653.
[6] 张龙, 潘家荣, 朱诚. 基于近红外光谱的不同发酵类型茶叶判别[J]. 食品科学, 2012, 33(20): 149-152.
[7] 蔡健荣, 吕强, 张海东. 利用近红外光谱技术识别不同类别的茶叶[J]. 安徽农业科学, 2007, 35(14): 4 083-4 084.
[8] 陈全胜, 江水泉, 王新宇. 基于电子舌技术和模式识别方法的茶叶质量等级评判[J]. 食品与机械, 2008, 24(1): 124-126.
[9] 安泉鑫, 陈莉, 庞林江, 等. 近红外光谱技术在食品中的应用进展[J].食品与机械, 2012, 28(5): 329-342.
[10] 戴素贤, 谢赤军. 七种高香型乌龙茶香气成分的主成分分析[J]. 华南农业大学学报, 1999, 20(1): 113-117.
[11] 叶国注, 江用文, 尹军峰, 等. 板栗香型绿茶香气成分特征研究[J]. 茶叶科学, 2009, 29(5): 385-394.
[12] 叶国注, 袁海波, 江用文, 等. Bayes逐步判别法在绿茶板栗香化学识别上的应用[J]. 茶叶科学, 2009, 29(1): 27-33.
[13] 张雪波, 肖世青, 杜先锋, 等. 基于主成分分析法的安溪铁观音香气质量评价模型的构建[J]. 食品科学, 2012, 33(22): 225-230.
[14] 颜鸿飞, 王美玲, 白秀芝, 等. 湖南茯砖茶香气成分的SPME-GC-TOFMS分析[J]. 食品科学, 2014, 35(22): 176-180.
[15] 王华夫, 李名君, 刘仲华, 等. 茯砖茶在发花过程中的香气变化[J]. 茶叶科学, 1991, 1l(增刊): 8l-86.
[16] 王增盛, 施兆鹏, 刘仲华, 等. 论黑茶品质及风味形成机理[J]. 茶叶科学, 1991, 1l(增刊): 1-9.
[17] 刘彬球, 陈孝权, 吴晓刚, 等. PCA和PLS-DA用于晒青毛茶级别分类研究[J]. 茶叶科学, 2015, 35(2): 179-184.
[18] 袁玉伟, 张永志, 付海燕, 等. 茶叶中同位素与多元素特征及其原产地PCA-LDA 判别研究[J]. 核农学报, 2013, 27(1): 47-55.
[19] 程权, 杨方, 李捷, 等. 全二维气相色谱—飞行时间质谱结合聚类分析与Fisher判别分析对铁观音品质等级的评价研究[J]. 分析测试学报, 2015, 34(5): 525-531.