Abstract
During the process of apple blemish detection based on machine vision technology, due to the color similarity between stem/calyx and blemish, which greatly decreases the accuracy in apple detection, a method was proposed based on Decision Tree-Support vector machine (DT-SVM) to solve the challenge problem. Firstly, the single threshold method is used to remove the background. Then in the R channel, Connected Component Labeling method and Otsu method were employed to extract object regions (stem, calyx, blemish),which were used to compute the color, texture and shape features. In the end, adopted the DT-SVM method to distinguish blemishes from the stem and calyx of apple images. By conducted on 600 apple images, the average accuracy of experiments was 97.7%. Compared to 1-V-1 SVM method and AdaBoost method, the DT-SVM method had a higher accuracy and less time-consuming, which could actually validate the effectiveness of the proposed method in recognizing the blemish of the apples.
Publication Date
9-28-2017
First Page
131
Last Page
135
DOI
10.13652/j.issn.1003-5788.2017.09.028
Recommended Citation
Guangying, QIU; Guilan, PENG; Dan, TAO; and Zhengrong, WANG
(2017)
"Detection on surface defect of apples by DT-SVM method,"
Food and Machinery: Vol. 33:
Iss.
9, Article 28.
DOI: 10.13652/j.issn.1003-5788.2017.09.028
Available at:
https://www.ifoodmm.cn/journal/vol33/iss9/28
References
[1] 郭志明. 基于近红外光谱及成像的苹果品质无损检测方法和装置研究[D]. 北京: 中国农业大学, 2015: 1-3.
[2] LEE D J, ARCHIBALD J K, XIONG Guang-ming. Rapid Color Grading for Fruit Quality Evaluation Using Direct Color Mapping[J]. Automation Science & Engineering IEEE Transactions On, 2011, 8(2): 292-302.
[3] MIZUSHIMA A, LU Ren-fu. An image segmentation method for apple sorting and grading using support vector machine and Otsu’s method[J]. Computers & Electronics in Agriculture, 2013, 94(94): 29-37.
[4] LEEMANS V, DESTAINM F. A real-time grading method of apples based on features extracted from defects[J]. Journal of Food Engineering, 2004, 61(1): 83-89.
[5] 籍保平, 吴文才. 计算机视觉苹果分级系统[J]. 农业机械学报, 2000, 31(6): 118-121.
[6] KLEYNEN O, LEEMANS V, DESTAINM F. Development of a multi-spectral vision system for the detection of defects on apples[J]. Journal of Food Engineering, 2005, 69(1): 41-49.
[7] XING Juan, JANCSOK P, JDE B. Stem-end/Calyx Identifica-tion on Apples using Contour Analysis in Multispectral Images[J]. Biosystems Engineering, 2007, 96(2): 231-237.
[8] UNAY D, GOSSELIN B, DESTAINM F, et al. Automatic grading of Bi-colored apples by multispectral machine vision[J]. Computers & Electronics in Agriculture, 2011, 75(1): 204-212.
[9] CHENG Xue-mei. NIR/MIR dual-sensor machine vision system for online apple stem-end/calyx recognition [J]. Transactions of the Asae, 2003, 46(2): 551-558.
[10] 赵娟, 彭彦昆, SAGAR Dhakal, 等. 基于机器视觉的苹果外观缺陷在线检测[J]. 农业机械学报, 2013, 44(S1): 260-263.
[11] 张驰, 陈立平, 黄文倩, 等. 基于编码点阵结构光的苹果果梗/花萼在线识别[J]. 农业机械学报, 2015, 46(7): 1-9.
[12] 李庆中, 汪懋华. 基于分形特征的水果缺陷快速识别方法[J]. 中国图象图形学报, 2000, 15(2): 144-148.
[13] 宋怡焕, 饶秀勤, 应义斌. 基于DT-CWT和LS-SVM的苹果果梗/花萼和缺陷识别[J]. 农业工程学报, 2012, 28(9): 114-118.
[14] ZHANG Dong, LILLYWHITE K D, LEE D J, et al. Automated apple stem end and calyx detection using evolution-constructed features[J]. Journal of Food Engineering, 2014, 119(3): 411-418.
[15] 张保华, 黄文倩, 李江波, 等. 基于亮度校正和AdaBoost的苹果缺陷在线识别[J]. 农业机械学报, 2014, 45(6): 221-226.
[16] UNAY D, GOSSELIN B. Stem and calyx recognition on ‘Jonagold’ apples by pattern recognition [J]. Journal of Food Engineering, 2007, 78(2): 597-605.
[17] 谢徵, 田建艳, 王芳, 等. 基于几何参数特征与决策树支持向量机的猪只姿态分类[J]. 黑龙江畜牧兽医, 2015, 19(10): 21-25.
[18] 刘佳男. 基于机器视觉的水果表面缺陷识别方法的研究[D]. 无锡: 江南大学, 2012: 43-54.
[19] 冈萨雷斯. 数字图像处理的MATLAB实现[M]. 北京: 清华大学出版社, 2013: 412-415.
[20] 郭永豪. 苹果图像特征提取与分类算法的研究与应用[D]. 重庆: 重庆大学, 2010: 6-18.
[21] 郭依正, 朱伟兴, 马长华, 等. 基于Isomap和支持向量机算法的俯视群养猪个体识别[J]. 农业工程学报, 2016, 32(3): 182-187.
[22] 宋怡焕. 苹果果梗/花萼与缺陷的纹理特征识别方法[D]. 浙江: 浙江大学, 2012: 16-38.
[23] 侯文军. 基于机器视觉的苹果自动分级方法研究[D]. 南京: 南京林业大学, 2006: 26-32.
[24] 刘静, 黄勇平, 章程辉. 视觉系统开发模块在芒果果面缺陷检测中的应用[J]. 食品与机械, 2009, 25(2): 82-85.
[25] 刘洋, 王涛, 左月明. 基于支持向量机的野生蘑菇近红外识别模型[J]. 食品与机械, 2016, 32(4): 92-94.
[26] 刘静, 管骁, 易翠平. 近红外光谱技术结合支持向量机对食用醋品牌溯源的研究[J]. 食品与机械, 2016, 32(1): 38-40.
[27] 施冬艳. 基于GA-PSO优化分层DT-SVM混合核的遥感图像分类及其应用[D]. 南京: 南京邮电大学, 2014: 41-46.
[28] 厉小润, 赵光宙, 赵辽英. 决策树支持向量机多分类器设计的向量投影法[J]. 控制与决策, 2008, 23(7): 745-750.
[29] 何海龙, 程明. 基于优化SVM-DT的阀门故障诊断方法[J]. 计算机工程与设计, 2016, 37(7): 1 932-1 936.
[30] SAHBI H, GEMAN D. A Hierarchy of Support Vector Machines for Pattern Detection [J]. Journal of Machine Learning Research, 2006, 7(2): 2 087-2 123.
[31] 谢徵. 基于决策树支持向量机的猪只姿态分类与异常行为分析[D]. 太原: 太原理工大学, 2015: 36-49.
- Usage
- Downloads: 31
- Abstract Views: 1