Abstract
The effects of water-unextractable arabinoxylans (WUAX) on the properties of the dough and the final qualities of traditional Chinese Youtiao were investigated. For Youtiao mixed powder, the water holding capacity had been improved, the change of gelatinization temperature was not significant and peak viscosity fell from 2,222.67 to 2,053.00 mPa·s. The farinographic properties of Youtiao dough was slightly affected by extra WUAX, except that the water absorption increased from 56.77% to 64.93%. The extensographic properties varied complexly at different proofing time. The SEM microstructure of dough showed that the uniform starch granule structure could not be formed in youtiao dough with 4% extra WUAX. The specific volume of Youtiao with 4% WUAX was only 3.68 cm3/g, which was 27.45% lower than that of control. The moisture content increased from 27.17% to 31.74%, and the hardness was almost four times as high as that of the control. Most importantly, the total oil content of Youtiao with 4% WUAX was only 12.29%, which was 37.31% less than the control. Our results suggested that WUAX could be used in Youtiao production to provide a low-fat option with improved nutrition.
Publication Date
9-28-2017
First Page
186
Last Page
191
DOI
10.13652/j.issn.1003-5788.2017.09.039
Recommended Citation
Weishi, WANG; Junhui, ZHANG; Ling, LI; Mingcong, FAN; Li, WANG; Haifeng, QIAN; Yan, LI; Hui, ZHANG; and Xiguang, QI
(2017)
"Effects of water-unextractable arabinoxylans on the qualities of traditional Chinese Youtiao,"
Food and Machinery: Vol. 33:
Iss.
9, Article 39.
DOI: 10.13652/j.issn.1003-5788.2017.09.039
Available at:
https://www.ifoodmm.cn/journal/vol33/iss9/39
References
[1] 李玲, 王立, 钱海峰, 等. 全麦粉对油条面团和油条质量的影响[J]. 现代食品科技, 2016(1): 242-249.
[2] 张慧慧, 周杨, 郑建仙. 复合改良剂对油条抗老化效果的影响[J]. 食品与机械, 2013, 28(4): 1-7.
[3] ALBERT S, MITTAL G S. Comparative evaluation of edible coatings to reduce fat uptake in a deep-fried cereal product[J]. Food Research International, 2002, 35(5): 445-458.
[4] WANG Hai-yan, FENG Feng, GUO Yong, et al. HPLC-UV quantitative analysis of acrylamide in baked and deep-fried Chinese foods[J]. Journal of Food Composition and Analysis, 2013, 31(1): 7-11.
[5] ADAM A, LOPEZ H W, LEUILLET M, et al. Whole wheat our exerts cholesterol-lowering in rats in its native form and after use in bread-making[J]. Food Chemistry, 2003, 80(3): 337-344.
[6] PARKER E D, LIU S, HORN LV, et al. The association of whole grain consumption with incident type 2 diabetes: the women’s health initiative observational study[J]. Annals of Epidemiology, 2013, 23(6): 321-327.
[7] GIACCO R, DELLA PEPA G, LUONGO D, et al. Whole grain intake in relation to body weight: from epidemiological evidence to clinical trials[J]. Nutrition, Metabolism and Cardiovascular Diseases, 2011, 21(12): 901-908.
[8] 李雪. 小麦麸皮水不溶性阿拉伯木聚糖对馒头品质的影响[D]. 郑州: 河南工业大学, 2012: 5-7.
[9] 李娟, 王莉, 李晓瑄, 等. 阿拉伯木聚糖对小麦面筋蛋白的作用机理研究[J]. 粮食与饲料工业, 2012(1): 39-41.
[10] 夏洁人, 徐学明, 臧继鑫. 小麦麸皮酶解产物对面包品质的影响[J]. 食品与机械, 2012, 28(6): 36-42.
[11] NOORT M W J, VAN HAASTER D, HEMERY Y, et al. The effect of particle size of wheat bran fractions on bread quality-evidence for fibre-protein interactions [J]. Journal of Cereal Science, 2010, 52(1): 59-64.
[12] 郑学玲, 李利民, 姚惠源, 等. 小麦麸皮及面粉戊聚糖对面团特性及面包烘焙品质影响的比较研究[J]. 中国粮油学报, 2005, 20(2): 21-25.
[13] ROUAU X, HAYEK M L, MOREAU D. Effect of an enzyme preparation containing pentosanases on the bread-making quanlity of flours in relation to changes in potensan properties[J]. Journal of Cereal Science, 1994, 19(3): 259-272.
[14] 杨念. 发酵型速冻油条的制作与冻藏过程中品质变化与改良的研究[D]. 郑州: 河南农业大学, 2012: 18.
[15] CHAU C F, CHEUNG P C K, WONG Y S. Functional properties of protein concentrates from three Chinese indigenous legume seeds[J]. Journal of Agricultural and Food Chemistry, 1997, 45(7): 2 500-2 503.
[16] BOURNE M C, MOYER J C, HAND D B. Measurement of food texture by a universal testing machine[J]. Food Technology, 1996, 20(4): 170-174.
[17] BONNAND-DUCASSE M, DELLA VALLE G, LEFEBVRE J, et al. Effect of wheat dietary fibres on bread dough development and rheological properties[J]. Journal of Cereal Science, 2010, 52(2): 200-206.
[18] GOESAERT H, BRIJS K, VERAVERBEKE W S, et al. Wheat flour constituents: how they impact bread quality, and how to impact their functionality[J]. Trends in Food Science & Technology, 2005, 16(1): 12-30.
[19] 高杨, 周新莉, 张红蕾. AX与面粉品之间的关系[J]. 粮食流通技术, 2013(1): 33-39.
[20] ROUAU X, HAYEK M L, MOREAU D. Effect of an enzyme preparation containing pentosanases on the bread-making quanlity of flours in relation to changes in potensan properties[J]. Journal of Cereal Science, 1994, 19(3): 259-272.
[21] COURTIN C M, DELCOUR J A. Arabinoxylans and endoxylanases in wheat flour bread-making[J]. Journal of Cereal Science, 2002, 35(3): 225-243.
[22] GOESAERT H, BRIJS K, VERAVERBEKE W S, et al. Wheat flour constituents: how they impact bread quality, and how to impact their functionality[J]. Trends in Food Science & Technology, 2005, 16(1): 12-30.
[23] DRING C, NUBER C, STUKENBORG F, et al. Impact of arabinoxylan addition on protein microstructure formation in wheat and rye dough[J]. Journal of Food Engineering, 2015, 154: 10-16.
[24] COURTIN C M, ROELANTS A, DELCOUR J A. Fractionation reconstitution experimentprovide insight into the role of endoxylanases in bread-making[J]. Journal of Agricultural and Food Chemistry, 1999, 47: 1 870-1 877.
[25] KHAN T, PARK J, KWON J H. Functional biopolymers produced by biochemical technology considering applications in food engineering[J]. Korean Journal of Chemical Engineering, 2007, 24(5): 816-826.
[26] LI Juan, HOU G G, CHEN Zheng-xing, et al. Studying the effects of whole-wheat flour on the rheological properties and the quality attributes of whole-wheat saltine cracker using SRC, alveograph, rheometer, and NMR technique[J]. LWT-Food Science and Technology, 2014, 55(1): 43-50.
[27] WANG M, HAMER R J, VAN-VLIET T, et al. Effect of water unextractable solids on gluten formation and properties: mechanistic considerations[J]. Journal of Cereal Science, 2003, 37(1): 55-64.