Abstract
Aiming at the problems of labor intensity, low automation level, and low efficiency in manual inspection of production date defects, the machine vision-based dairy production date coding defect detection system was developed. The system uses a CCD camera, computer, light source, etc. to build a hardware platform, and image processing techniques, such as median filtering, binarization, image segmentation, and template matching were used to achieve the goal of defective detection, including production date missing and fuzzy codes. The experimental results showed that the system could accurately identify products with defective production date, and achieve the expected results, showing practical significance.
Publication Date
10-28-2018
First Page
100
Last Page
103,108
DOI
10.13652/j.issn.1003-5788.2018.10.021
Recommended Citation
Xiaona, SUN; Jichao, LIU; and Guohua, GAO
(2018)
"Study on visual code-based defect detection technology for production date of dairy packaging,"
Food and Machinery: Vol. 34:
Iss.
10, Article 21.
DOI: 10.13652/j.issn.1003-5788.2018.10.021
Available at:
https://www.ifoodmm.cn/journal/vol34/iss10/21
References
[1] 王鲁娜. 视觉传感器在药品生产日期检测中的应用[D]. 济南: 山东大学, 2008: 84-84.
[2] 邬文俊. 基于机器视觉技术的啤酒瓶字符自动识别系统的研究[D]. 武汉: 湖北工业大学, 2005: 1-3.
[3] STEGER C, ULRICH M, WIEDEMANN C. Machine vision algorithms and applications[M]. [S.l.]: John Wiley & Sons, 2007: 2-5.
[4] 杨攀, 姜立军, 李哲林. 基于机器视觉的螺纹零件头部裂纹检测[J]. 计算机应用与软件, 2013, 30(4): 51-54.
[5] 张亚军, 齐杏林, 董成基. 基于机器视觉的枪弹钢芯自动检测系统[J]. 兵工自动化, 2012, 31(7): 8-11.
[6] GUNATILAKE P, SIEQEL M W, JORDAN A G, et al. Image understanding algorithms for remote visual inspection of aircraft surface[C]// Proceedings of the SPIE-TheInternational Society for Optical Engineering. San Jose: [s. n.], 1997: 2-13.
[7] PYNN J, WRIGHT A, LODGE R. Automatic identification of cracks in road surfaces[C]// Image Processing and ITS Applications, 1999. Seventh International Conference on. [S.l.]: The Institution of Engineering and Technology, 1999: 671-675.
[8] 彭向前, 陈幼平, 余文勇. 一种基于机器视觉的浮法玻璃质量在线检测系统[J]. 制造业自动化, 2007, 29(12): 50-52.
[9] 王丹民, 康勇. 钢板表面质量机器视觉检测系统设计[J]. 自动化仪表, 2011, 32(3): 44-46.
[10] 基于消费者认知的食品标签法规标准研究[J]. 标准应用研究, 2015(1): 12-16.
[11] 姚海涛, 锁雪萍, 胡象辉, 等. 基于机器视觉的商品生产日期快速检测的研究[J]. 数字技术与应用, 2016(12): 54-55.
[12] 尹浩, 李峰. 互联网性能测量技术发展研究[J]. 计算机研究与发展, 2016, 53(1): 3-14.
[13] 冯韬, 于建江. 复杂环境下的网络时延测量方法研究[J]. 科技信息, 2012(22): 27-27.
[14] 李福建, 张元培. 机器视觉系统组成研究[J]. 自动化博览, 2004, 21(2): 61-63.
[15] 杨明, 白烨, 王秋良, 等. 面阵CCD摄像机光学镜头参数及选用[J]. 大气与环境光学学报, 2005, 18(3): 27-30.
[16] 黄涛. 模板匹配在图像识别中的应用[J]. 云南大学学报: 自然科学版, 2005(S2): 327-332.
[17] 耿国章, 尹立敏, 雷凯, 等. 一种改进的均值金字塔快速搜索算法[J]. 电子器件, 2007, 30(4): 1 394-1 396.
[18] 冉令峰. 基于垂直投影的车牌字符分割方法[J]. 通信技术, 2012, 45(4): 89-91.
[19] 陈寅鹏, 丁晓青. 复杂车辆图像中的车牌定位与字符分割方法[J]. 红外与激光工程, 2004, 33(1): 29-33.