Abstract
In view of the possible inclusion of Staphylococcus aureus in dairy products, a magnetoelastic S. aureus wireless sensor was developed to study the detection the mechanism of its magnetoelastic sensor in dairy products. By comparing the magnetic resonance wireless sensor's resonance frequency shift and fluorescent experiment in bacteria and aseptic dairy liquids, the analysis results showed that the resonant frequency of the magnetoelastic sensor could better reflect the weight of the sensor. When the mass of the sensor decreases or the liquid increased, the resonance frequency of the sensor decreased. It was also confirmed that the viscosity of the liquid was significantly suppressed by the viscosity of the magnetoelastic sensor. Even though the viscosity changed only 0.15 mPa·s, the resonance frequency shift could reach 0.5 kHz.
Publication Date
11-28-2018
First Page
60
Last Page
63,81
DOI
10.13652/j.issn.1003-5788.2018.11.013
Recommended Citation
Hua, WANG; Dewen, CHEN; Deqiang, ZHOU; and Piyu, CAO
(2018)
"Research on the detection mechanism of dairy products basedon the magnetoelastic wireless sensor,"
Food and Machinery: Vol. 34:
Iss.
11, Article 12.
DOI: 10.13652/j.issn.1003-5788.2018.11.013
Available at:
https://www.ifoodmm.cn/journal/vol34/iss11/12
References
[1] 张泽庆, 张清安. 浅议食品安全快速检测[J]. 食品研究与开发, 2005, 26(2): 141-143.
[2] 张严峻, 张俊彦, 梅玲玲, 等. 金黄色葡萄球菌肠毒素基因的分型和分布[J]. 中国卫生检验杂志, 2005, 15(6): 682-684.
[3] SCALLAN E, HOEKSTRA R M, ANGULO F J, et al. Foodborne illness acquired in the United States: major pathogens[J]. Emerg Infect Dis, 2011, 17(1): 7-15.
[4] 张阳, 乔明宇, 王新. 婴幼儿食品中金黄色葡萄球菌污染情况及其耐药基因和新型肠毒素基因的检测[J]. 现代食品科技, 2016(11): 280-285.
[5] SCHLIEVERT P M, CASE L C. Molecular analysis of staphylococcal superantigens[M]// Methicillin-Resistant Staphylococcus aureus, (MRSA) Protocols. [S.l.]: Humana Press, 2007: 113-126.
[6] IKEDA T, TAMATE N, YAMAGUCHI K, et al. Mass outbreak of food poisoning disease caused by small amounts of staphylococcal enterotoxins A and H[J]. Applied & Environmental Microbiology, 2005, 71(5): 2 793-2 795.
[7] TKACIKOVA L, TESFAYE A. Detection of the genes for Staphylococcus aureus enterotoxin by PCR[J]. Acta Veterinaria Brno, 2003, 72(4): 627-630.
[8] NOVICK R P. Mobile genetic elements and bacterial toxinoses: the superantigen-encoding pathogenicity islands of Staphylococ-cus aureus[J]. Plasmid, 2003, 49(2): 93.
[9] CHIANG Yu-cheng, FAN Chih-ming, LIAO Wan-wen, et al. Real-time PCR detection of Staphylococcus aureus in milk and meat using new primers designed from the heat shock protein gene htrA sequence[J]. Journal of Food Protection, 2007, 70(12): 2 855.
[10] HENNEKINNE J A, BUYSER M L D, DRAGACCI S. Staphylococcus aureus, and its food poisoning toxins: characteri-zation and outbreak investigation[J]. Fems Microbiology Reviews, 2012, 36(4): 815-836.
[11] ZELADA-GUILLN G A, BLONDEAU P, RIU J, et al. Label-free detection of Staphylococcus aureus, in skin using real-time potentiometric biosensors based on carbon nanotubes and aptamers[J]. Biosensors & Bioelectronics, 2012, 31(1): 226-232.
[12] PANG Peng-fei, ZHANG Yan-li, GE Shu-tian, et al. Determination of glucose using bienzyme layered assembly magnetoelastic sensing device[J]. Sensors and Actuators B: Chemical, 2009, 136(2): 310-314.
[13] XIE Hong, CHAI Y, HORIKAWA S, et al. A pulsed wave excitation system to characterize micron-scale magnetoelastic biosensors[J]. Sensors and Actuators A: Physical, 2014, 205: 143-149.
[14] LIN Hai-lan, LU Qing-zhu, GE Shu-tian, et al. Detection of pathogen Escherichia coli O157:H7 with a wireless magnetoelastic-sensing device amplified by using chitosanmodified magnetic Fe3O4 nanoparticles[J]. Sensors and Actuators B: Chemical, 2010, 147(1): 343-349.
[15] KARUPPUSWAMI S, ARANGALI H, CHAHAL P. A Hybrid Electrical-Mechanical Wireless Magnetoelastic Sensor for Liquid Sample Measurements[C]// IEEE, Electronic Components and Technology Conference. [S.l.]: IEEE, 2016: 2 535-2 540.