Abstract
In order to eliminate the influence of scattering, the original spectrum was processed by multiplicative scatter correction (MSC). The effective band was selected according to the correlation coefficient method, and 8 characteristic wavelengths were selected by continuous projection algorithm combined with information entropy. Finally, the effective bands and different features were used to establish prediction model for mildew maize aflatoxin B1 and gibberellin content at wavelength by BP neural network. The results showed that the prediction model established by spectral information at 8 kinds of characteristic wavelengths was the best, with the correct prediction rate of aflatoxin B1 content of 98.74%, the root mean square error of 0.048 5, and the correct rate of gibberellin content prediction of 100%, and the square root error of 0.160 5. Therefore, the method of hyperspectral coupled with neural network is feasible to detect the aflatoxin B1 and gibberellin content in moldy maize.
Publication Date
11-28-2018
First Page
64
Last Page
69
DOI
10.13652/j.issn.1003-5788.2018.11.014
Recommended Citation
Guanghui, WANG and Yong, YIN
(2018)
"Detection of moldy maize aflatoxin B1 and gibberellinby hyperspectral coupled with neural network,"
Food and Machinery: Vol. 34:
Iss.
11, Article 13.
DOI: 10.13652/j.issn.1003-5788.2018.11.014
Available at:
https://www.ifoodmm.cn/journal/vol34/iss11/13
References
[1] 徐茂才, 张英秋, 等. 简析玉米霉变粒发生原因及解决对策[J]. 现代化农业, 2016, 10(1): 12-14.
[2] 路伟明. 黑龙江省玉米霉变粒发生原因及解决对策[J]. 现代化农业, 2016, 8(4): 16-17.
[3] 唐秋菊. 玉米霉变中毒的危害性及疾病预防[J].农业开发与装备, 2014, 11(5): 100-104.
[4] 张保华, 李江波, 樊书祥. 高光谱成像技术在果蔬品质与安全无损检测中的原理及应用[J]. 光谱学与光谱法分析, 2014, 34(10): 2 743-2 751.
[5] JONES J L. Application of DNA probes in the food industry[J]. Trends Food Science Technology, 2009(2): 28-32.
[6] 黄海泉. 实时荧光定量PCR技术在植物检疫中应用的研究进展[J]. 湖北农业科学, 2012, 51(1): 5-8.
[7] 王俊双, 许定花, 孙秀兰. 食品中脱氧雪腐镰刀菌烯醇三种检测方法的比较研究[J]. 食品工业科技, 2008(2): 287-290.
[8] 孙俊, 金夏明, 毛罕平, 等. 高光谱图像技术在掺假大米检测中的应用[J]. 农业工程学报, 2014, 30(21): 301-307.
[9] 梁琨, 杜莹莹, 卢伟, 等. 基于高光谱成像技术的小麦籽粒赤霉病识别[J]. 农业机械学报, 2016, 47(2): 309-315.
[10] 刘德华, 张淑娟, 王斌, 等. 基于高光谱成像技术的山楂损伤和虫害缺陷识别研究[J]. 光谱学与光谱分析, 2015, 35(11): 3 167-3 171.
[11] 李金梦, 叶旭君. 高光谱成像技术的柑橘植株叶片含氮量预测模型[J].光谱学与光谱分析, 2014, 34(1): 212-216.
[12] SUN Jing-tao, MA Ben-xue, DONG Juan, et al. Detection of internal qualities of hami melons using hyperspectral imaging technology based on variable selection algorithms[J]. Journal of Food Process Engineering, 2017, 40(3): e12496.
[13] 文韬, 洪添胜, 李立君, 等. 基于高光谱技术的霉变稻谷脂肪酸含量无损检测[J]. 农业工程学报, 2015, 31(18): 233-239.
[14] 李小昱, 徐森淼, 冯耀泽, 等. 基于高光谱图像与果蝇优化算法的马铃薯轻微碰伤检测[J]. 农业机械学报, 2016, 47(1): 221-226.
[15] QIN Jian-wei, LU Ren-fu. Detecting pits in tart cherries by hyperspectral transmission imaging[J].The International Society for Opticals Engineering, 2014, 48(5): 1 963-1 970.
[16] 朱瑶迪, 邹小波, 石吉勇, 等. 高光谱图像技术快速预测发酵醋醅总酸分布[J]. 农业机械学报, 2014, 30(16): 320-327.
[17] 孙俊, 武小红. 基于高光谱图像的生菜叶片水分预测研究[J]. 光谱学与光谱分析, 2013, 33(2): 522-526.
[18] YIN Yong, HAO Yin-feng, YU Hui-chun. Detection potential of multi-features representation of e-nose data in classification of moldy maize samples[J]. Food & Bioprocess Technology, 2017, 10(12): 2 226-2 239.
[19] 郭志明, 赵春江, 黄文倩, 等. 苹果糖度高光谱图像可视化预测的光强度校正方法[J]. 农业机械学报, 2015, 46(7): 227-232.
[20] 徐义. 基于高光谱成像技术的花生仁质量无损检测研究[D]. 镇江: 江苏大学, 2015: 34-45.
[21] 郭恩有, 刘木华, 赵杰文, 等. 脐橙糖度的高光谱图像无损检测技术[J]. 农业机械学报, 2008, 39(5): 91-93, 103.
[22] LI Dao-liang. Computer and computing technologies in agriculture[J]. Computer & Computing Technologies in Agriculture II, 2016, 295(29): 104-112.
[23] 王彩玲, 胡柄樑, 王洪伟, 等. 约束最大相关系数的高光谱影像目标探测研究[J]. 激光与红外, 2016, 46(1): 98-102.
[24] 李金梦, 叶旭君. 高光谱成像技术的柑橘植株叶片含氮量预测模型[J]. 光谱学与光谱分析, 2014, 34(1): 212-216.
[25] 张楠楠, 刘伟, 王伟, 等. 玉米霉变及黄曲霉毒素的图像处理检测方法[J]. 中国粮油学报, 2014, 29(2): 82-88.