Abstract
In order to investigate mixing uniformity in microwave reactor, the microwave reactors with dual stirring structure were designed, combined by the upper and lower impellers A100(A1), the upper impeller A200 and lower impeller A100(A2), and the upper impeller A100 and lower impeller A200(A3). Based on Computational Fluid Dynamics (CFD) method, laminar model, component diffusion model and multi-reference frame method (MRF) were used to simulate flow mixing characteristics of the alcohol-oil mixture in these microwave reactors. The flow characteristics of the alcohol-oil mixture and mixing time characteristics at different feeding positions in these microwave reactors were obtained. The results showed that there was a circulation flow surface with axial velocity approaching zero between the upper and lower impellers in microwave reactor with combined impeller A1, which affected the axial flow mixing of the mixture. The combined impeller A2 and A3 improved the axial velocity distribution on circulation flow surface, with the maximum axial velocity 1.22 times and 2.28 times of the combined impeller A1, respectively. Meanwhile it enhanced the axial migration capability of mixture between the upper and lower impeller. The position of the feeding point could affect the mixing time of mixture in microwave reactor. The combined impeller A3 obtains the shortest mixing time at the ideal feeding point B. The study provided a practical theoretical reference for the design, selection and application of the microwave reactor combined impellers.
Publication Date
11-28-2018
First Page
82
Last Page
88
DOI
10.13652/j.issn.1003-5788.2018.11.018
Recommended Citation
Yu, ZHANG; Guangyuan, JIN; Zhengwei, CUI; Chunfang, SONG; and Haiying, CHEN
(2018)
"Numerical simulation of flow mixing characteristics in microwavereactor with combined impeller,"
Food and Machinery: Vol. 34:
Iss.
11, Article 17.
DOI: 10.13652/j.issn.1003-5788.2018.11.018
Available at:
https://www.ifoodmm.cn/journal/vol34/iss11/17
References
[1] 万子岸, 高飞, 王辉, 等. 微波加热技术在材料制备中的研究进展[J]. 现代化工, 2017(12): 50-53.
[2] 钱志强, 张慧芳, 王世栋, 等. 微波技术在吸附分离中的应用研究进展[J]. 化工新型材料, 2018, 46(2): 272-274.
[3] 孙培永, 张利雄, 姚志龙, 等. 新型反应器和过程强化技术在生物柴油制备中的应用研究进展[J]. 石油学报: 石油加工, 2008, 24(1): 1-8.
[4] 曹湘琪, 姚斌, 郑勤红, 等. 凹弧面内筒壁对微波反应器加热效率及均匀性的影响[J]. 现代制造工程, 2016(9): 13-16.
[5] 钟汝能, 姚斌, 向泰, 等. 腔体内壁脊形凹槽对微波反应器加热效率及均匀性的影响[J]. 食品与机械, 2017, 33(4): 81-85.
[6] 杨继孔, 郑勤红, 曹湘琪, 等. 高功率矩形微波反应器加载圆柱形负载的仿真优化[J]. 云南师范大学学报: 自然科学版, 2014, 34(6): 14-18.
[7] DOMINGUEZ T E, PLAZA G P, DIAZMORCILLO A, et al. Optimisation of electric field uniformity in microwave heating systems by means of multi-feeding and genetic algorithms[J]. International Journal of Materials and Product Technology, 2007, 29(1): 149-162.
[8] ROMANO V R, MARRA F, TAMMARO U. Modelling of microwave heating of foodstuff: study on the influence of sample dimensions with a FEM approach[J]. Journal of Food Engineering, 2005, 71(3): 233-241.
[9] 贺强. 钨矿机械活化碱煮设备性能仿真分析[D]. 赣州: 江西理工大学, 2013: 1-9.
[10] ZHANG Jin-jin, GAO Zheng-ming, CAI Ya-ting, et al. Power consumption and mass transfer in a gas-liquid-solid stirred tank reactor with various triple-impeller combinations[J]. Chemical Engineering Science, 2017, 170: 464-475.
[11] CHENG Dang, FENG Xin, CHENG Jing-cai, et al. Experimental study on the dispersed phase macro-mixing in an immiscible liquid-liquid stirred reactor[J]. Chemical Engineering Science, 2015, 126(APR): 196-203.
[12] ZHU Hua-cheng, YE Jing-hua, GULATI T, et al. Dynamic analysis of continuous-flow microwave reactor with a screw propeller[J]. Applied Thermal Engineering, 2017, 123: 1 456-1 461.
[14] 周俊超, 车圆圆, 吴可君, 等. 基于CFD模拟的强放热反应釜盘管空间排布的优化设计[J]. 高校化学工程学报, 2015(1): 27-34.
[15] 汪博恺, 金光远, 崔政伟, 等. 微波反应器的搅拌叶轮性能数值分析及对比[J]. 热能动力工程, 2017(s1): 91-96.
[16] 梁瑛娜, 高殿荣, 拜亮. 双层桨搅拌槽内层流流场与混合时间的数值模拟[J]. 机械工程学报, 2015, 51(16): 185-195.
[17] 梁瑛娜, 高殿荣, 拜亮. 偏心组合桨搅拌槽内层流混合过程的数值模拟[J]. 化工进展, 2014, 33(12): 3 203-3 209.
[18] 方德明, 陈涛, 杨象岳, 等. 基于CFD流场分析的反应釜搅拌器结构改进[J]. 轻工机械, 2014, 32(2): 95-98.